Manopt.jl logo
Manopt.jl
  • Home
  • About
  • How to...
    • Get started: Optimize!
    • Speedup using Inplace computations
    • Use Automatic Differentiation
    • Record values
    • Do Contrained Optimization
    • Do Geodesic Regression
  • Solvers
    • Introduction
    • Alternating Gradient Descent
    • Augmented Lagrangian Method
    • Chambolle-Pock
    • Conjugate gradient descent
    • Cyclic Proximal Point
    • Douglas–Rachford
    • Exact Penalty Method
    • Frank-Wolfe
    • Gradient Descent
    • Levenberg–Marquardt
    • Nelder–Mead
    • Particle Swarm Optimization
    • Primal-dual Riemannian semismooth Newton
    • Quasi-Newton
    • Stochastic Gradient Descent
    • Subgradient method
    • Steihaug-Toint TCG Method
    • Trust-Regions Solver
  • Plans
    • Specify a Solver
    • Problem
    • Objective
    • Solver State
    • Stepsize
    • Stopping Criteria
    • Debug Output
    • Recording values
  • Functions
    • Introduction
    • Bézier curves
    • Cost functions
    • Differentials
    • Adjoint Differentials
    • Gradients
    • Proximal Maps
    • Specific Manifold Functions
  • Helpers
    • Checks
    • Data
    • Error Measures
    • Exports
  • Contributing to Manopt.jl
  • Notation
  • Extensions
  • Function Index
Version
  • Helpers
  • Error Measures
  • Error Measures
Edit on GitHub

Error Measures

Manopt.meanSquaredError — Function
meanSquaredError(M, p, q)

Compute the (mean) squared error between the two points p and q on the (power) manifold M.

source
Manopt.meanAverageError — Function
meanSquaredError(M,x,y)

Compute the (mean) squared error between the two points x and y on the PowerManifold manifold M.

source
« DataExports »

Powered by Documenter.jl and the Julia Programming Language.

Settings


This document was generated with Documenter.jl version 0.27.24 on Sunday 26 March 2023. Using Julia version 1.8.5.