A manifold objective
The Objective describes that actual cost function and all its properties.
Manopt.AbstractManifoldObjective
— TypeAbstractManifoldObjective{E<:AbstractEvaluationType}
Describe the collection of the optimization function $f: \mathcal M → ℝ$ (or even a vectorial range) and its corresponding elements, which might for example be a gradient or (one or more) proximal maps.
All these elements should usually be implemented as functions (M, p) -> ...
, or (M, X, p) -> ...
that is
- the first argument of these functions should be the manifold
M
they are defined on - the argument
X
is present, if the computation is performed in-place ofX
(seeInplaceEvaluation
) - the argument
p
is the place the function ($f$ or one of its elements) is evaluated at.
the type T
indicates the global AbstractEvaluationType
.
Manopt.AbstractDecoratedManifoldObjective
— TypeAbstractDecoratedManifoldObjective{E<:AbstractEvaluationType,O<:AbstractManifoldObjective}
A common supertype for all decorators of AbstractManifoldObjective
s to simplify dispatch. The second parameter should refer to the undecorated objective (the most inner one).
Which has two main different possibilities for its containing functions concerning the evaluation mode, not necessarily the cost, but for example gradient in an AbstractManifoldGradientObjective
.
Manopt.AbstractEvaluationType
— TypeAbstractEvaluationType
An abstract type to specify the kind of evaluation a AbstractManifoldObjective
supports.
Manopt.AllocatingEvaluation
— TypeAllocatingEvaluation <: AbstractEvaluationType
A parameter for a AbstractManoptProblem
indicating that the problem uses functions that allocate memory for their result, they work out of place.
Manopt.InplaceEvaluation
— TypeInplaceEvaluation <: AbstractEvaluationType
A parameter for a AbstractManoptProblem
indicating that the problem uses functions that do not allocate memory but work on their input, in place.
Manopt.evaluation_type
— Functionevaluation_type(mp::AbstractManoptProblem)
Get the AbstractEvaluationType
of the objective in AbstractManoptProblem
mp
.
evaluation_type(::AbstractManifoldObjective{Teval})
Get the AbstractEvaluationType
of the objective.
Decorators for objectives
An objective can be decorated using the following trait and function to initialize
Manopt.dispatch_objective_decorator
— Functiondispatch_objective_decorator(o::AbstractManoptSolverState)
Indicate internally, whether an AbstractManifoldObjective
o
to be of decorating type, it stores (encapsulates) an object in itself, by default in the field o.objective
.
Decorators indicate this by returning Val{true}
for further dispatch.
The default is Val{false}
, so by default an state is not decorated.
Manopt.is_objective_decorator
— Functionis_object_decorator(s::AbstractManifoldObjective)
Indicate, whether AbstractManifoldObjective
s
are of decorator type.
Manopt.decorate_objective!
— Functiondecorate_objective!(M, o::AbstractManifoldObjective)
decorate the AbstractManifoldObjective
o
with specific decorators.
Optional arguments
optional arguments provide necessary details on the decorators. A specific one is used to activate certain decorators.
cache=missing
: specify a cache. Currently:Simple
is supported and:LRU
if you loadLRUCache.jl
. For this case a tuple specifying what to cache and how many can be provided, has to be specified. For example(:LRU, [:Cost, :Gradient], 10)
states that the last 10 used cost function evaluations and gradient evaluations should be stored. Seeobjective_cache_factory
for details.count=missing
: specify calls to the objective to be called, seeManifoldCountObjective
for the full listobjective_type=:Riemannian
: specify that an objective is:Riemannian
or:Euclidean
. The:Euclidean
symbol is equivalent to specifying it as:Embedded
, since in the end, both refer to converting an objective from the embedding (whether its Euclidean or not) to the Riemannian one.
See also
Embedded objectives
Manopt.EmbeddedManifoldObjective
— TypeEmbeddedManifoldObjective{P, T, E, O2, O1<:AbstractManifoldObjective{E}} <:
AbstractDecoratedManifoldObjective{E,O2}
Declare an objective to be defined in the embedding. This also declares the gradient to be defined in the embedding, and especially being the Riesz representer with respect to the metric in the embedding. The types can be used to still dispatch on also the undecorated objective type O2
.
Fields
objective
: the objective that is defined in the embeddingp=nothing
: a point in the embedding.X=nothing
: a tangent vector in the embedding
When a point in the embedding p
is provided, embed!
is used in place of this point to reduce memory allocations. Similarly X
is used when embedding tangent vectors
Cache objective
Since single function calls, for example to the cost or the gradient, might be expensive, a simple cache objective exists as a decorator, that caches one cost value or gradient.
It can be activated/used with the cache=
keyword argument available for every solver.
Manopt.reset_counters!
— Functionreset_counters(co::ManifoldCountObjective, value::Integer=0)
Reset all values in the count objective to value
.
Manopt.objective_cache_factory
— Functionobjective_cache_factory(M::AbstractManifold, o::AbstractManifoldObjective, cache::Symbol)
Generate a cached variant of the AbstractManifoldObjective
o
on the AbstractManifold M
based on the symbol cache
.
The following caches are available
:Simple
generates aSimpleManifoldCachedObjective
:LRU
generates aManifoldCachedObjective
where you should use the form(:LRU, [:Cost, :Gradient])
to specify what should be cached or(:LRU, [:Cost, :Gradient], 100)
to specify the cache size. Here this variant defaults to(:LRU, [:Cost, :Gradient], 100)
, caching up to 100 cost and gradient values.[1]
objective_cache_factory(M::AbstractManifold, o::AbstractManifoldObjective, cache::Tuple{Symbol, Array, Array})
objective_cache_factory(M::AbstractManifold, o::AbstractManifoldObjective, cache::Tuple{Symbol, Array})
Generate a cached variant of the AbstractManifoldObjective
o
on the AbstractManifold M
based on the symbol cache[1]
, where the second element cache[2]
are further arguments to the cache and the optional third is passed down as keyword arguments.
For all available caches see the simpler variant with symbols.
A simple cache
A first generic cache is always available, but it only caches one gradient and one cost function evaluation (for the same point).
Manopt.SimpleManifoldCachedObjective
— Type SimpleManifoldCachedObjective{O<:AbstractManifoldGradientObjective{E,TC,TG}, P, T,C} <: AbstractManifoldGradientObjective{E,TC,TG}
Provide a simple cache for an AbstractManifoldGradientObjective
that is for a given point p
this cache stores a point p
and a gradient $\operatorname{grad} f(p)$ in X
as well as a cost value $f(p)$ in c
.
Both X
and c
are accompanied by booleans to keep track of their validity.
Constructor
SimpleManifoldCachedObjective(M::AbstractManifold, obj::AbstractManifoldGradientObjective; kwargs...)
Keyword arguments
p=
rand
(M)
: a point on the manifold to initialize the cache withX=get_gradient(M, obj, p)
orzero_vector(M,p)
: a tangent vector to store the gradient in, see alsoinitialize=
c=[
get_cost](@ref)
(M, obj, p)or
0.0: a value to store the cost function in
initialize`initialized=true
: whether to initialize the cachedX
andc
or not.
A generic cache
For the more advanced cache, you need to implement some type of cache yourself, that provides a get!
and implement init_caches
. This is for example provided if you load LRUCache.jl
. Then you obtain
Manopt.ManifoldCachedObjective
— TypeManifoldCachedObjective{E,P,O<:AbstractManifoldObjective{<:E},C<:NamedTuple{}} <: AbstractDecoratedManifoldObjective{E,P}
Create a cache for an objective, based on a NamedTuple
that stores some kind of cache.
Constructor
ManifoldCachedObjective(M, o::AbstractManifoldObjective, caches::Vector{Symbol}; kwargs...)
Create a cache for the AbstractManifoldObjective
where the Symbols in caches
indicate, which function evaluations to cache.
Supported symbols
Symbol | Caches calls to (incl. ! variants) | Comment |
---|---|---|
:Cost | get_cost | |
:EqualityConstraint | get_equality_constraint (M, p, i) | |
:EqualityConstraints | get_equality_constraint (M, p, :) | |
:GradEqualityConstraint | get_grad_equality_constraint | tangent vector per (p,i) |
:GradInequalityConstraint | get_inequality_constraint | tangent vector per (p,i) |
:Gradient | get_gradient (M,p) | tangent vectors |
:Hessian | get_hessian | tangent vectors |
:InequalityConstraint | get_inequality_constraint (M, p, j) | |
:InequalityConstraints | get_inequality_constraint (M, p, :) | |
:Preconditioner | get_preconditioner | tangent vectors |
:ProximalMap | get_proximal_map | point per (p,λ,i) |
:StochasticGradients | get_gradients | vector of tangent vectors |
:StochasticGradient | get_gradient (M, p, i) | tangent vector per (p,i) |
:SubGradient | get_subgradient | tangent vectors |
:SubtrahendGradient | get_subtrahend_gradient | tangent vectors |
Keyword arguments
p=rand(M)
: the type of the keys to be used in the caches. Defaults to the default representation onM
.value=get_cost(M, objective, p)
: the type of values for numeric values in the cacheX=zero_vector(M,p)
: the type of values to be cached for gradient and Hessian calls.cache=[:Cost]
: a vector of symbols indicating which function calls should be cached.cache_size=10
: number of (least recently used) calls to cachecache_sizes=Dict{Symbol,Int}()
: a named tuple or dictionary specifying the sizes individually for each cache.
Manopt.init_caches
— Functioninit_caches(caches, T::Type{LRU}; kwargs...)
Given a vector of symbols caches
, this function sets up the NamedTuple
of caches, where T
is the type of cache to use.
Keyword arguments
p=
rand
(M)
: a point on a manifold, to both infer its type for keys and initialize cachesvalue=0.0
: a value both typing and initialising number-caches, the default is for (Float) values like the cost.X=zero_vector(M, p)
: a tangent vector atp
to both type and initialize tangent vector cachescache_size=10
: a default cache size to usecache_sizes=Dict{Symbol,Int}()
: a dictionary of sizes for thecaches
to specify different (non-default) sizes
init_caches(M::AbstractManifold, caches, T; kwargs...)
Given a vector of symbols caches
, this function sets up the NamedTuple
of caches for points/vectors on M
, where T
is the type of cache to use.
Count objective
Manopt.ManifoldCountObjective
— TypeManifoldCountObjective{E,P,O<:AbstractManifoldObjective,I<:Integer} <: AbstractDecoratedManifoldObjective{E,P}
A wrapper for any AbstractManifoldObjective
of type O
to count different calls to parts of the objective.
Fields
counts
a dictionary of symbols mapping to integers keeping the counted valuesobjective
the wrapped objective
Supported symbols
Symbol | Counts calls to (incl. ! variants) | Comment |
---|---|---|
:Cost | get_cost | |
:EqualityConstraint | get_equality_constraint | requires vector of counters |
:EqualityConstraints | get_equality_constraint | when evaluating all of them with : |
:GradEqualityConstraint | get_grad_equality_constraint | requires vector of counters |
:GradEqualityConstraints | get_grad_equality_constraint | when evaluating all of them with : |
:GradInequalityConstraint | get_inequality_constraint | requires vector of counters |
:GradInequalityConstraints | get_inequality_constraint | when evaluating all of them with : |
:Gradient | get_gradient (M,p) | |
:Hessian | get_hessian | |
:InequalityConstraint | get_inequality_constraint | requires vector of counters |
:InequalityConstraints | get_inequality_constraint | when evaluating all of them with : |
:Preconditioner | get_preconditioner | |
:ProximalMap | get_proximal_map | |
:StochasticGradients | get_gradients | |
:StochasticGradient | get_gradient (M, p, i) | |
:SubGradient | get_subgradient | |
:SubtrahendGradient | get_subtrahend_gradient |
Constructors
ManifoldCountObjective(objective::AbstractManifoldObjective, counts::Dict{Symbol, <:Integer})
Initialise the ManifoldCountObjective
to wrap objective
initializing the set of counts
ManifoldCountObjective(M::AbstractManifold, objective::AbstractManifoldObjective, count::AbstractVecor{Symbol}, init=0)
Count function calls on objective
using the symbols in count
initialising all entries to init
.
Internal decorators
Manopt.ReturnManifoldObjective
— TypeReturnManifoldObjective{E,O2,O1<:AbstractManifoldObjective{E}} <:
AbstractDecoratedManifoldObjective{E,O2}
A wrapper to indicate that get_solver_result
should return the inner objective.
The types are such that one can still dispatch on the undecorated type O2
of the original objective as well.
Specific Objective typed and their access functions
Cost objective
Manopt.AbstractManifoldCostObjective
— TypeAbstractManifoldCostObjective{T<:AbstractEvaluationType} <: AbstractManifoldObjective{T}
Representing objectives on manifolds with a cost function implemented.
Manopt.ManifoldCostObjective
— TypeManifoldCostObjective{T, TC} <: AbstractManifoldCostObjective{T, TC}
specify an AbstractManifoldObjective
that does only have information about the cost function $f: \mathbb M → ℝ$ implemented as a function (M, p) -> c
to compute the cost value c
at p
on the manifold M
.
cost
: a function $f: \mathcal M → ℝ$ to minimize
Constructors
ManifoldCostObjective(f)
Generate a problem. While this Problem does not have any allocating functions, the type T
can be set for consistency reasons with other problems.
Used with
Access functions
Manopt.get_cost
— Functionget_cost(amp::AbstractManoptProblem, p)
evaluate the cost function f
stored within the AbstractManifoldObjective
of an AbstractManoptProblem
amp
at the point p
.
get_cost(M::AbstractManifold, obj::AbstractManifoldObjective, p)
evaluate the cost function f
defined on M
stored within the AbstractManifoldObjective
at the point p
.
get_cost(M::AbstractManifold, mco::AbstractManifoldCostObjective, p)
Evaluate the cost function from within the AbstractManifoldCostObjective
on M
at p
.
By default this implementation assumed that the cost is stored within mco.cost
.
get_cost(TpM, trmo::TrustRegionModelObjective, X)
Evaluate the tangent space TrustRegionModelObjective
\[m(X) = f(p) + ⟨\operatorname{grad} f(p), X ⟩_p + \frac{1}{2} ⟨\operatorname{Hess} f(p)[X], X⟩_p.\]
get_cost(TpM, trmo::AdaptiveRagularizationWithCubicsModelObjective, X)
Evaluate the tangent space AdaptiveRagularizationWithCubicsModelObjective
\[m(X) = f(p) + ⟨\operatorname{grad} f(p), X ⟩_p + \frac{1}{2} ⟨\operatorname{Hess} f(p)[X], X⟩_p + \frac{σ}{3} \lVert X \rVert^3,\]
at X
, cf. Eq. (33) in [ABBC20].
get_cost(TpM::TangentSpace, slso::SymmetricLinearSystemObjective, X)
evaluate the cost
\[f(X) = \frac{1}{2} \lVert \mathcal A[X] + b \rVert_{p}^2,\qquad X ∈ T_{p}\mathcal M,\]
at X
.
get_cost(M::AbstractManifold, sgo::ManifoldStochasticGradientObjective, p, i)
Evaluate the i
th summand of the cost.
If you use a single function for the stochastic cost, then only the index ì=1
` is available to evaluate the whole cost.
get_cost(M::AbstractManifold,emo::EmbeddedManifoldObjective, p)
Evaluate the cost function of an objective defined in the embedding by first embedding p
before calling the cost function stored in the EmbeddedManifoldObjective
.
and internally
Manopt.get_cost_function
— Functionget_cost_function(amco::AbstractManifoldCostObjective)
return the function to evaluate (just) the cost $f(p)=c$ as a function (M,p) -> c
.
Gradient objectives
Manopt.AbstractManifoldGradientObjective
— TypeAbstractManifoldGradientObjective{E<:AbstractEvaluationType, TC, TG} <: AbstractManifoldCostObjective{E, TC}
An abstract type for all objectives that provide a (full) gradient, where T
is a AbstractEvaluationType
for the gradient function.
Manopt.ManifoldGradientObjective
— TypeManifoldGradientObjective{T<:AbstractEvaluationType} <: AbstractManifoldGradientObjective{T}
specify an objective containing a cost and its gradient
Fields
cost
: a function $f: \mathcal M → ℝ$gradient!!
: the gradient $\operatorname{grad}f: \mathcal M → \mathcal T\mathcal M$ of the cost function $f$.
Depending on the AbstractEvaluationType
T
the gradient can have to forms
- as a function
(M, p) -> X
that allocates memory forX
, anAllocatingEvaluation
- as a function
(M, X, p) -> X
that work in place ofX
, anInplaceEvaluation
Constructors
ManifoldGradientObjective(cost, gradient; evaluation=AllocatingEvaluation())
Used with
Manopt.ManifoldAlternatingGradientObjective
— TypeManifoldAlternatingGradientObjective{E<:AbstractEvaluationType,TCost,TGradient} <: AbstractManifoldGradientObjective{E}
An alternating gradient objective consists of
- a cost function $F(x)$
- a gradient $\operatorname{grad}F$ that is either
- given as one function $\operatorname{grad}F$ returning a tangent vector
X
onM
or - an array of gradient functions $\operatorname{grad}F_i$,
ì=1,…,n
s each returning a component of the gradient
- given as one function $\operatorname{grad}F$ returning a tangent vector
This Objective is usually defined using the ProductManifold
from Manifolds.jl
, so Manifolds.jl
to be loaded.
Constructors
ManifoldAlternatingGradientObjective(F, gradF::Function;
evaluation=AllocatingEvaluation()
)
ManifoldAlternatingGradientObjective(F, gradF::AbstractVector{<:Function};
evaluation=AllocatingEvaluation()
)
Create a alternating gradient problem with an optional cost
and the gradient either as one function (returning an array) or a vector of functions.
Manopt.ManifoldStochasticGradientObjective
— TypeManifoldStochasticGradientObjective{T<:AbstractEvaluationType} <: AbstractManifoldGradientObjective{T}
A stochastic gradient objective consists of
- a(n optional) cost function $f(p) = \displaystyle\sum_{i=1}^n f_i(p)$
- an array of gradients, $\operatorname{grad}f_i(p), i=1,\ldots,n$ which can be given in two forms
- as one single function $(\mathcal M, p) ↦ (X_1,…,X_n) ∈ (T_p\mathcal M)^n$
- as a vector of functions $\bigl( (\mathcal M, p) ↦ X_1, …, (\mathcal M, p) ↦ X_n\bigr)$.
Where both variants can also be provided as InplaceEvaluation
functions (M, X, p) -> X
, where X
is the vector of X1,...,Xn
and (M, X1, p) -> X1, ..., (M, Xn, p) -> Xn
, respectively.
Constructors
ManifoldStochasticGradientObjective(
grad_f::Function;
cost=Missing(),
evaluation=AllocatingEvaluation()
)
ManifoldStochasticGradientObjective(
grad_f::AbstractVector{<:Function};
cost=Missing(), evaluation=AllocatingEvaluation()
)
Create a Stochastic gradient problem with the gradient either as one function (returning an array of tangent vectors) or a vector of functions (each returning one tangent vector).
The optional cost can also be given as either a single function (returning a number) pr a vector of functions, each returning a value.
Used with
Note that this can also be used with a gradient_descent
, since the (complete) gradient is just the sums of the single gradients.
Manopt.NonlinearLeastSquaresObjective
— TypeNonlinearLeastSquaresObjective{E<:AbstractEvaluationType} <: AbstractManifoldObjective{T}
An objective to model the nonlinear least squares problem
\[\operatorname*{arg\,min}_{p ∈ \mathcal M} \frac{1}{2} \sum_{i=1}^m \lvert f_i(p) \rvert^2\]
where $f: \mathcal M → ℝ^m$ is written with component functions $f_i: \mathcal M → ℝ$, $i=1,…,m$, and each component function is continuously differentiable.
Specify a nonlinear least squares problem
Fields
objective
: aAbstractVectorGradientFunction
{E}
containing both the vector of cost functions $f_i$ (or a function returning a vector of costs) as well as their gradients $\operatorname{grad} f_i$ (or Jacobian of the vector-valued function).
This NonlinearLeastSquaresObjective
then has the same AbstractEvaluationType
T
as the (inner) objective
.
Constructors
NonlinearLeastSquaresObjective(f, jacobian, range_dimension::Integer; kwargs...)
NonlinearLeastSquaresObjective(vf::AbstractVectorGradientFunction)
Arguments
f
the vectorial cost function $f: \mathcal M → ℝ^m$jacobian
the Jacobian, might also be a vector of gradients of the component functions off
range_dimension::Integer
the number of dimensionsm
the functionf
maps into
These three can also be passed as a AbstractVectorGradientFunction
vf
already.
Keyword arguments
evaluation=
AllocatingEvaluation
()
: specify whether the functions that return an array, for example a point or a tangent vector, work by allocating its result (AllocatingEvaluation
) or whether they modify their input argument to return the result therein (InplaceEvaluation
). Since usually the first argument is the manifold, the modified argument is the second.function_type::
AbstractVectorialType
=
FunctionVectorialType
()
: specify the format the residuals are given in. By default a function returning a vector.jacobian_tangent_basis::AbstractBasis=DefaultOrthonormalBasis()
; shortcut to specify the basis the Jacobian matrix is build with.jacobian_type::
AbstractVectorialType
=
CoordinateVectorialType
(jacobian_tangent_basis)
: specify the format the Jacobian is given in. By default a matrix of the differential with respect to a certain basis of the tangent space.
See also
There is also a second variant, if just one function is responsible for computing the cost and the gradient
Manopt.ManifoldCostGradientObjective
— TypeManifoldCostGradientObjective{T} <: AbstractManifoldObjective{T}
specify an objective containing one function to perform a combined computation of cost and its gradient
Fields
costgrad!!
: a function that computes both the cost $f: \mathcal M → ℝ$ and its gradient $\operatorname{grad}f: \mathcal M → \mathcal T\mathcal M$
Depending on the AbstractEvaluationType
T
the gradient can have to forms
- as a function
(M, p) -> (c, X)
that allocates memory for the gradientX
, anAllocatingEvaluation
- as a function
(M, X, p) -> (c, X)
that work in place ofX
, anInplaceEvaluation
Constructors
ManifoldCostGradientObjective(costgrad; evaluation=AllocatingEvaluation())
Used with
Access functions
Manopt.get_gradient
— Functionget_gradient(s::AbstractManoptSolverState)
return the (last stored) gradient within AbstractManoptSolverState
s`. By default also undecorates the state beforehand
get_gradient(amp::AbstractManoptProblem, p)
get_gradient!(amp::AbstractManoptProblem, X, p)
evaluate the gradient of an AbstractManoptProblem
amp
at the point p
.
The evaluation is done in place of X
for the !
-variant.
get_gradient(M::AbstractManifold, mgo::AbstractManifoldGradientObjective{T}, p)
get_gradient!(M::AbstractManifold, X, mgo::AbstractManifoldGradientObjective{T}, p)
evaluate the gradient of a AbstractManifoldGradientObjective{T}
mgo
at p
.
The evaluation is done in place of X
for the !
-variant. The T=
AllocatingEvaluation
problem might still allocate memory within. When the non-mutating variant is called with a T=
InplaceEvaluation
memory for the result is allocated.
Note that the order of parameters follows the philosophy of Manifolds.jl
, namely that even for the mutating variant, the manifold is the first parameter and the (in-place) tangent vector X
comes second.
get_gradient(agst::AbstractGradientSolverState)
return the gradient stored within gradient options. THe default returns agst.X
.
get_gradient(M::AbstractManifold, vgf::VectorGradientFunction, p, i)
get_gradient(M::AbstractManifold, vgf::VectorGradientFunction, p, i, range)
get_gradient!(M::AbstractManifold, X, vgf::VectorGradientFunction, p, i)
get_gradient!(M::AbstractManifold, X, vgf::VectorGradientFunction, p, i, range)
Evaluate the gradients of the vector function vgf
on the manifold M
at p
and the values given in range
, specifying the representation of the gradients.
Since i
is assumed to be a linear index, you can provide
- a single integer
- a
UnitRange
to specify a range to be returned like1:3
- a
BitVector
specifying a selection - a
AbstractVector{<:Integer}
to specify indices :
to return the vector of all gradients
get_gradient(TpM, trmo::TrustRegionModelObjective, X)
Evaluate the gradient of the TrustRegionModelObjective
\[\operatorname{grad} m(X) = \operatorname{grad} f(p) + \operatorname{Hess} f(p)[X].\]
get_gradient(TpM, trmo::AdaptiveRagularizationWithCubicsModelObjective, X)
Evaluate the gradient of the AdaptiveRagularizationWithCubicsModelObjective
\[\operatorname{grad} m(X) = \operatorname{grad} f(p) + \operatorname{Hess} f(p)[X] + σ\lVert X \rVert X,\]
at X
, cf. Eq. (37) in [ABBC20].
get_gradient(TpM::TangentSpace, slso::SymmetricLinearSystemObjective, X)
get_gradient!(TpM::TangentSpace, Y, slso::SymmetricLinearSystemObjective, X)
evaluate the gradient of
\[f(X) = \frac{1}{2} \lVert \mathcal A[X] + b \rVert_{p}^2,\qquad X ∈ T_{p}\mathcal M,\]
Which is $\operatorname{grad} f(X) = \mathcal A[X]+b$. This can be computed in-place of Y
.
get_gradient(M::AbstractManifold, sgo::ManifoldStochasticGradientObjective, p, k)
get_gradient!(M::AbstractManifold, sgo::ManifoldStochasticGradientObjective, Y, p, k)
Evaluate one of the summands gradients $\operatorname{grad}f_k$, $k∈\{1,…,n\}$, at x
(in place of Y
).
If you use a single function for the stochastic gradient, that works in-place, then get_gradient
is not available, since the length (or number of elements of the gradient required for allocation) can not be determined.
get_gradient(M::AbstractManifold, sgo::ManifoldStochasticGradientObjective, p)
get_gradient!(M::AbstractManifold, sgo::ManifoldStochasticGradientObjective, X, p)
Evaluate the complete gradient $\operatorname{grad} f = \displaystyle\sum_{i=1}^n \operatorname{grad} f_i(p)$ at p
(in place of X
).
If you use a single function for the stochastic gradient, that works in-place, then get_gradient
is not available, since the length (or number of elements of the gradient required for allocation) can not be determined.
get_gradient(M::AbstractManifold, emo::EmbeddedManifoldObjective, p)
get_gradient!(M::AbstractManifold, X, emo::EmbeddedManifoldObjective, p)
Evaluate the gradient function of an objective defined in the embedding, that is embed p
before calling the gradient function stored in the EmbeddedManifoldObjective
.
The returned gradient is then converted to a Riemannian gradient calling riemannian_gradient
.
Manopt.get_gradients
— Functionget_gradients(M::AbstractManifold, sgo::ManifoldStochasticGradientObjective, p)
get_gradients!(M::AbstractManifold, X, sgo::ManifoldStochasticGradientObjective, p)
Evaluate all summands gradients $\{\operatorname{grad}f_i\}_{i=1}^n$ at p
(in place of X
).
If you use a single function for the stochastic gradient, that works in-place, then get_gradient
is not available, since the length (or number of elements of the gradient) can not be determined.
Manopt.get_residuals
— Functionget_residuals(M::AbstractManifold, nlso::NonlinearLeastSquaresObjective, p)
get_residuals!(M::AbstractManifold, V, nlso::NonlinearLeastSquaresObjective, p)
Compute the vector of residuals $f_i(p)$, $i=1,…,m$ given the manifold M
, the NonlinearLeastSquaresObjective
nlso
and a current point $p$ on M
.
Manopt.get_residuals!
— Functionget_residuals(M::AbstractManifold, nlso::NonlinearLeastSquaresObjective, p)
get_residuals!(M::AbstractManifold, V, nlso::NonlinearLeastSquaresObjective, p)
Compute the vector of residuals $f_i(p)$, $i=1,…,m$ given the manifold M
, the NonlinearLeastSquaresObjective
nlso
and a current point $p$ on M
.
and internally
Manopt.get_gradient_function
— Functionget_gradient_function(amgo::AbstractManifoldGradientObjective, recursive=false)
return the function to evaluate (just) the gradient $\operatorname{grad} f(p)$, where either the gradient function using the decorator or without the decorator is used.
By default recursive
is set to false
, since usually to just pass the gradient function somewhere, one still wants for example the cached one or the one that still counts calls.
Depending on the AbstractEvaluationType
E
this is a function
(M, p) -> X
for theAllocatingEvaluation
case(M, X, p) -> X
for theInplaceEvaluation
working in-place ofX
.
Subgradient objective
Manopt.ManifoldSubgradientObjective
— TypeManifoldSubgradientObjective{T<:AbstractEvaluationType,C,S} <:AbstractManifoldCostObjective{T, C}
A structure to store information about a objective for a subgradient based optimization problem
Fields
cost
: the function $f$ to be minimizedsubgradient
: a function returning a subgradient $∂f$ of $f$
Constructor
ManifoldSubgradientObjective(f, ∂f)
Generate the ManifoldSubgradientObjective
for a subgradient objective, consisting of a (cost) function f(M, p)
and a function ∂f(M, p)
that returns a not necessarily deterministic element from the subdifferential at p
on a manifold M
.
Access functions
Manopt.get_subgradient
— FunctionX = get_subgradient(M::AbstractManifold, sgo::AbstractManifoldGradientObjective, p)
get_subgradient!(M::AbstractManifold, X, sgo::AbstractManifoldGradientObjective, p)
Evaluate the subgradient, which for the case of a objective having a gradient, means evaluating the gradient itself.
While in general, the result might not be deterministic, for this case it is.
get_subgradient(amp::AbstractManoptProblem, p)
get_subgradient!(amp::AbstractManoptProblem, X, p)
evaluate the subgradient of an AbstractManoptProblem
amp
at point p
.
The evaluation is done in place of X
for the !
-variant. The result might not be deterministic, one element of the subdifferential is returned.
X = get_subgradient(M;;AbstractManifold, sgo::ManifoldSubgradientObjective, p)
get_subgradient!(M;;AbstractManifold, X, sgo::ManifoldSubgradientObjective, p)
Evaluate the (sub)gradient of a ManifoldSubgradientObjective
sgo
at the point p
.
The evaluation is done in place of X
for the !
-variant. The result might not be deterministic, one element of the subdifferential is returned.
Proximal map objective
Manopt.ManifoldProximalMapObjective
— TypeManifoldProximalMapObjective{E<:AbstractEvaluationType, TC, TP, V <: Vector{<:Integer}} <: AbstractManifoldCostObjective{E, TC}
specify a problem for solvers based on the evaluation of proximal maps, which represents proximal maps $\operatorname{prox}_{λf_i}$ for summands $f = f_1 + f_2+ … + f_N$ of the cost function $f$.
Fields
cost
: a function $f:\mathcal M→ℝ$ to minimizeproxes
: proximal maps $\operatorname{prox}_{λf_i}:\mathcal M → \mathcal M$ as functions(M, λ, p) -> q
or in-place(M, q, λ, p)
.number_of_proxes
: number of proximal maps per function, to specify when one of the maps is a combined one such that the proximal maps functions return more than one entry per function, you have to adapt this value. if not specified, it is set to one prox per function.
Constructor
ManifoldProximalMapObjective(f, proxes_f::Union{Tuple,AbstractVector}, numer_of_proxes=onex(length(proxes));
evaluation=Allocating)
Generate a proximal problem with a tuple or vector of funtions, where by default every function computes a single prox of one component of $f$.
ManifoldProximalMapObjective(f, prox_f); evaluation=Allocating)
Generate a proximal objective for $f$ and its proxial map $\operatorname{prox}_{λf}$
See also
Access functions
Manopt.get_proximal_map
— Functionq = get_proximal_map(M::AbstractManifold, mpo::ManifoldProximalMapObjective, λ, p)
get_proximal_map!(M::AbstractManifold, q, mpo::ManifoldProximalMapObjective, λ, p)
q = get_proximal_map(M::AbstractManifold, mpo::ManifoldProximalMapObjective, λ, p, i)
get_proximal_map!(M::AbstractManifold, q, mpo::ManifoldProximalMapObjective, λ, p, i)
evaluate the (i
th) proximal map of ManifoldProximalMapObjective p
at the point p
of p.M
with parameter $λ>0$.
Hessian objective
Manopt.AbstractManifoldHessianObjective
— TypeAbstractManifoldHessianObjective{T<:AbstractEvaluationType,TC,TG,TH} <: AbstractManifoldGradientObjective{T,TC,TG}
An abstract type for all objectives that provide a (full) Hessian, where T
is a AbstractEvaluationType
for the gradient and Hessian functions.
Manopt.ManifoldHessianObjective
— TypeManifoldHessianObjective{T<:AbstractEvaluationType,C,G,H,Pre} <: AbstractManifoldHessianObjective{T,C,G,H}
specify a problem for Hessian based algorithms.
Fields
cost
: a function $f:\mathcal M→ℝ$ to minimizegradient
: the gradient $\operatorname{grad}f:\mathcal M → \mathcal T\mathcal M$ of the cost function $f$hessian
: the Hessian $\operatorname{Hess}f(x)[⋅]: \mathcal T_{x} \mathcal M → \mathcal T_{x} \mathcal M$ of the cost function $f$preconditioner
: the symmetric, positive definite preconditioner as an approximation of the inverse of the Hessian of $f$, a map with the same input variables as thehessian
to numerically stabilize iterations when the Hessian is ill-conditioned
Depending on the AbstractEvaluationType
T
the gradient and can have to forms
- as a function
(M, p) -> X
and(M, p, X) -> Y
, resp., anAllocatingEvaluation
- as a function
(M, X, p) -> X
and (M, Y, p, X), resp., anInplaceEvaluation
Constructor
ManifoldHessianObjective(f, grad_f, Hess_f, preconditioner = (M, p, X) -> X;
evaluation=AllocatingEvaluation())
See also
Access functions
Manopt.get_hessian
— FunctionY = get_hessian(amp::AbstractManoptProblem{T}, p, X)
get_hessian!(amp::AbstractManoptProblem{T}, Y, p, X)
evaluate the Hessian of an AbstractManoptProblem
amp
at p
applied to a tangent vector X
, computing $\operatorname{Hess}f(q)[X]$, which can also happen in-place of Y
.
get_hessian(M::AbstractManifold, vgf::VectorHessianFunction, p, X, i)
get_hessian(M::AbstractManifold, vgf::VectorHessianFunction, p, X, i, range)
get_hessian!(M::AbstractManifold, X, vgf::VectorHessianFunction, p, X, i)
get_hessian!(M::AbstractManifold, X, vgf::VectorHessianFunction, p, X, i, range)
Evaluate the Hessians of the vector function vgf
on the manifold M
at p
in direction X
and the values given in range
, specifying the representation of the gradients.
Since i
is assumed to be a linear index, you can provide
- a single integer
- a
UnitRange
to specify a range to be returned like1:3
- a
BitVector
specifying a selection - a
AbstractVector{<:Integer}
to specify indices :
to return the vector of all Hessian evaluations
get_hessian(TpM, trmo::TrustRegionModelObjective, X)
Evaluate the Hessian of the TrustRegionModelObjective
\[\operatorname{Hess} m(X)[Y] = \operatorname{Hess} f(p)[Y].\]
get_Hessian(TpM::TangentSpace, slso::SymmetricLinearSystemObjective, X, V)
get_Hessian!(TpM::TangentSpace, W, slso::SymmetricLinearSystemObjective, X, V)
evaluate the Hessian of
\[f(X) = \frac{1}{2} \lVert \mathcal A[X] + b \rVert_{p}^2,\qquad X ∈ T_{p}\mathcal M,\]
Which is $\operatorname{Hess} f(X)[Y] = \mathcal A[V]$. This can be computed in-place of W
.
get_hessian(M::AbstractManifold, emo::EmbeddedManifoldObjective, p, X)
get_hessian!(M::AbstractManifold, Y, emo::EmbeddedManifoldObjective, p, X)
Evaluate the Hessian of an objective defined in the embedding, that is embed p
and X
before calling the Hessian function stored in the EmbeddedManifoldObjective
.
The returned Hessian is then converted to a Riemannian Hessian calling riemannian_Hessian
.
Manopt.get_preconditioner
— Functionget_preconditioner(amp::AbstractManoptProblem, p, X)
evaluate the symmetric, positive definite preconditioner (approximation of the inverse of the Hessian of the cost function f
) of a AbstractManoptProblem
amp
s objective at the point p
applied to a tangent vector X
.
get_preconditioner(M::AbstractManifold, mho::ManifoldHessianObjective, p, X)
evaluate the symmetric, positive definite preconditioner (approximation of the inverse of the Hessian of the cost function F
) of a ManifoldHessianObjective
mho
at the point p
applied to a tangent vector X
.
and internally
Manopt.get_hessian_function
— Functionget_gradient_function(amgo::AbstractManifoldGradientObjective{E<:AbstractEvaluationType})
return the function to evaluate (just) the Hessian $\operatorname{Hess} f(p)$. Depending on the AbstractEvaluationType
E
this is a function
(M, p, X) -> Y
for theAllocatingEvaluation
case(M, Y, p, X) -> X
for theInplaceEvaluation
, working in-place ofY
.
Primal-dual based objectives
Manopt.AbstractPrimalDualManifoldObjective
— TypeAbstractPrimalDualManifoldObjective{E<:AbstractEvaluationType,C,P} <: AbstractManifoldCostObjective{E,C}
A common abstract super type for objectives that consider primal-dual problems.
Manopt.PrimalDualManifoldObjective
— TypePrimalDualManifoldObjective{T<:AbstractEvaluationType} <: AbstractPrimalDualManifoldObjective{T}
Describes an Objective linearized or exact Chambolle-Pock algorithm, cf. [BHS+21], [CP11]
Fields
All fields with !!
can either be in-place or allocating functions, which should be set depending on the evaluation=
keyword in the constructor and stored in T <: AbstractEvaluationType
.
cost
: $F + G(Λ(⋅))$ to evaluate interim cost function valueslinearized_forward_operator!!
: linearized operator for the forward operation in the algorithm $DΛ$linearized_adjoint_operator!!
: the adjoint differential $(DΛ)^* : \mathcal N → T\mathcal M$prox_f!!
: the proximal map belonging to $f$prox_G_dual!!
: the proximal map belonging to $g_n^*$Λ!!
: the forward operator (if given) $Λ: \mathcal M → \mathcal N$
Either the linearized operator $DΛ$ or $Λ$ are required usually.
Constructor
PrimalDualManifoldObjective(cost, prox_f, prox_G_dual, adjoint_linearized_operator;
linearized_forward_operator::Union{Function,Missing}=missing,
Λ::Union{Function,Missing}=missing,
evaluation::AbstractEvaluationType=AllocatingEvaluation()
)
The last optional argument can be used to provide the 4 or 5 functions as allocating or mutating (in place computation) ones. Note that the first argument is always the manifold under consideration, the mutated one is the second.
Manopt.PrimalDualManifoldSemismoothNewtonObjective
— TypePrimalDualManifoldSemismoothNewtonObjective{E<:AbstractEvaluationType, TC, LO, ALO, PF, DPF, PG, DPG, L} <: AbstractPrimalDualManifoldObjective{E, TC, PF}
Describes a Problem for the Primal-dual Riemannian semismooth Newton algorithm. [DL21]
Fields
cost
: $F + G(Λ(⋅))$ to evaluate interim cost function valueslinearized_operator
: the linearization $DΛ(⋅)[⋅]$ of the operator $Λ(⋅)$.linearized_adjoint_operator
: the adjoint differential $(DΛ)^* : \mathcal N → T\mathcal M$prox_F
: the proximal map belonging to $F$diff_prox_F
: the (Clarke Generalized) differential of the proximal maps of $F$prox_G_dual
: the proximal map belonging toG^\ast_n
`diff_prox_dual_G
: the (Clarke Generalized) differential of the proximal maps of $G^\ast_n$Λ
: the exact forward operator. This operator is required ifΛ(m)=n
does not hold.
Constructor
PrimalDualManifoldSemismoothNewtonObjective(cost, prox_F, prox_G_dual, forward_operator, adjoint_linearized_operator,Λ)
Access functions
Manopt.adjoint_linearized_operator
— FunctionX = adjoint_linearized_operator(N::AbstractManifold, apdmo::AbstractPrimalDualManifoldObjective, m, n, Y)
adjoint_linearized_operator(N::AbstractManifold, X, apdmo::AbstractPrimalDualManifoldObjective, m, n, Y)
Evaluate the adjoint of the linearized forward operator of $(DΛ(m))^*[Y]$ stored within the AbstractPrimalDualManifoldObjective
(in place of X
). Since $Y∈T_n\mathcal N$, both $m$ and $n=Λ(m)$ are necessary arguments, mainly because the forward operator $Λ$ might be missing
in p
.
Manopt.forward_operator
— Functionq = forward_operator(M::AbstractManifold, N::AbstractManifold, apdmo::AbstractPrimalDualManifoldObjective, p)
forward_operator!(M::AbstractManifold, N::AbstractManifold, q, apdmo::AbstractPrimalDualManifoldObjective, p)
Evaluate the forward operator of $Λ(x)$ stored within the TwoManifoldProblem
(in place of q
).
Manopt.get_differential_dual_prox
— Functionη = get_differential_dual_prox(N::AbstractManifold, pdsno::PrimalDualManifoldSemismoothNewtonObjective, n, τ, X, ξ)
get_differential_dual_prox!(N::AbstractManifold, pdsno::PrimalDualManifoldSemismoothNewtonObjective, η, n, τ, X, ξ)
Evaluate the differential proximal map of $G_n^*$ stored within PrimalDualManifoldSemismoothNewtonObjective
\[D\operatorname{prox}_{τG_n^*}(X)[ξ]\]
which can also be computed in place of η
.
Manopt.get_differential_primal_prox
— Functiony = get_differential_primal_prox(M::AbstractManifold, pdsno::PrimalDualManifoldSemismoothNewtonObjective σ, x)
get_differential_primal_prox!(p::TwoManifoldProblem, y, σ, x)
Evaluate the differential proximal map of $F$ stored within AbstractPrimalDualManifoldObjective
\[D\operatorname{prox}_{σF}(x)[X]\]
which can also be computed in place of y
.
Manopt.get_dual_prox
— FunctionY = get_dual_prox(N::AbstractManifold, apdmo::AbstractPrimalDualManifoldObjective, n, τ, X)
get_dual_prox!(N::AbstractManifold, apdmo::AbstractPrimalDualManifoldObjective, Y, n, τ, X)
Evaluate the proximal map of $g_n^*$ stored within AbstractPrimalDualManifoldObjective
\[ Y = \operatorname{prox}}_{τG_n^*}(X)\]
which can also be computed in place of Y
.
Manopt.get_primal_prox
— Functionq = get_primal_prox(M::AbstractManifold, p::AbstractPrimalDualManifoldObjective, σ, p)
get_primal_prox!(M::AbstractManifold, p::AbstractPrimalDualManifoldObjective, q, σ, p)
Evaluate the proximal map of $F$ stored within AbstractPrimalDualManifoldObjective
\[\operatorname{prox}_{σF}(x)\]
which can also be computed in place of y
.
Manopt.linearized_forward_operator
— FunctionY = linearized_forward_operator(M::AbstractManifold, N::AbstractManifold, apdmo::AbstractPrimalDualManifoldObjective, m, X, n)
linearized_forward_operator!(M::AbstractManifold, N::AbstractManifold, Y, apdmo::AbstractPrimalDualManifoldObjective, m, X, n)
Evaluate the linearized operator (differential) $DΛ(m)[X]$ stored within the AbstractPrimalDualManifoldObjective
(in place of Y
), where n = Λ(m)
.
Constrained objective
Manopt.ConstrainedManifoldObjective
— TypeConstrainedManifoldObjective{T<:AbstractEvaluationType, C<:ConstraintType} <: AbstractManifoldObjective{T}
Describes the constrained objective
\[\begin{aligned} \operatorname*{arg\,min}_{p ∈\mathcal{M}} & f(p)\\ \text{subject to } &g_i(p)\leq0 \quad \text{ for all } i=1,…,m,\\ \quad &h_j(p)=0 \quad \text{ for all } j=1,…,n. \end{aligned}\]
Fields
objective
: anAbstractManifoldObjective
representing the unconstrained objective, that is containing cost $f$, the gradient of the cost $f$ and maybe the Hessian.equality_constraints
: anAbstractManifoldObjective
representing the equality constraints
$h: \mathcal M → \mathbb R^n$ also possibly containing its gradient and/or Hessian
equality_constraints
: anAbstractManifoldObjective
representing the equality constraints
$h: \mathcal M → \mathbb R^n$ also possibly containing its gradient and/or Hessian
Constructors
ConstrainedManifoldObjective(M::AbstractManifold, f, grad_f;
g=nothing,
grad_g=nothing,
h=nothing,
grad_h=nothing;
hess_f=nothing,
hess_g=nothing,
hess_h=nothing,
equality_constraints=nothing,
inequality_constraints=nothing,
evaluation=AllocatingEvaluation(),
M = nothing,
p = isnothing(M) ? nothing : rand(M),
)
Generate the constrained objective based on all involved single functions f
, grad_f
, g
, grad_g
, h
, grad_h
, and optionally a Hessian for each of these. With equality_constraints
and inequality_constraints
you have to provide the dimension of the ranges of h
and g
, respectively. You can also provide a manifold M
and a point p
to use one evaluation of the constraints to automatically try to determine these sizes.
ConstrainedManifoldObjective(M::AbstractManifold, mho::AbstractManifoldObjective;
equality_constraints = nothing,
inequality_constraints = nothing
)
Generate the constrained objective either with explicit constraints $g$ and $h$, and their gradients, or in the form where these are already encapsulated in VectorGradientFunction
s.
Both variants require that at least one of the constraints (and its gradient) is provided. If any of the three parts provides a Hessian, the corresponding object, that is a ManifoldHessianObjective
for f
or a VectorHessianFunction
for g
or h
, respectively, is created.
It might be beneficial to use the adapted problem to specify different ranges for the gradients of the constraints
Manopt.ConstrainedManoptProblem
— TypeConstrainedProblem{
TM <: AbstractManifold,
O <: AbstractManifoldObjective
HR<:Union{AbstractPowerRepresentation,Nothing},
GR<:Union{AbstractPowerRepresentation,Nothing},
HHR<:Union{AbstractPowerRepresentation,Nothing},
GHR<:Union{AbstractPowerRepresentation,Nothing},
} <: AbstractManoptProblem{TM}
A constrained problem might feature different ranges for the (vectors of) gradients of the equality and inequality constraints.
The ranges are required in a few places to allocate memory and access elements correctly, they work as follows:
Assume the objective is
\[\begin{aligned} \operatorname*{arg\,min}_{p ∈\mathcal{M}} & f(p)\\ \text{subject to } &g_i(p)\leq0 \quad \text{ for all } i=1,…,m,\\ \quad &h_j(p)=0 \quad \text{ for all } j=1,…,n. \end{aligned}\]
then the gradients can (classically) be considered as vectors of the components gradients, for example $\bigl(\operatorname{grad} g_1(p), \operatorname{grad} g_2(p), …, \operatorname{grad} g_m(p) \bigr)$.
In another interpretation, this can be considered a point on the tangent space at $P = (p,…,p) \in \mathcal M^m$, so in the tangent space to the PowerManifold
$\mathcal M^m$. The case where this is a NestedPowerRepresentation
this agrees with the interpretation from before, but on power manifolds, more efficient representations exist.
To then access the elements, the range has to be specified. That is what this problem is for.
Constructor
ConstrainedManoptProblem(
M::AbstractManifold,
co::ConstrainedManifoldObjective;
range=NestedPowerRepresentation(),
gradient_equality_range=range,
gradient_inequality_range=range
hessian_equality_range=range,
hessian_inequality_range=range
)
Creates a constrained Manopt problem specifying an AbstractPowerRepresentation
for both the gradient_equality_range
and the gradient_inequality_range
, respectively.
as well as the helper functions
Manopt.AbstractConstrainedFunctor
— TypeAbstractConstrainedFunctor{T}
A common supertype for fucntors that model constraint functions.
This supertype provides access for the fields $λ$ and $μ$, the dual variables of constraintsnof type T
.
Manopt.AbstractConstrainedSlackFunctor
— TypeAbstractConstrainedSlackFunctor{T,R}
A common supertype for fucntors that model constraint functions with slack.
This supertype additionally provides access for the fields
μ::T
the dual for the inequality constraintss::T
the slack parametyer, andβ::R
the the barrier parameter
which is also of typee T
.
Manopt.LagrangianCost
— TypeLagrangianCost{CO,T} <: AbstractConstrainedFunctor{T}
Implement the Lagrangian of a ConstrainedManifoldObjective
co
.
\[\mathcal L(p; μ, λ) = f(p) + \sum_{i=1}^m μ_ig_i(p) + \sum_{j=1}^n λ_jh_j(p)\]
Fields
co::CO
,μ::T
,λ::T
as mentioned, whereT
represents a vector type.
Constructor
LagrangianCost(co, μ, λ)
Create a functor for the Lagrangian with fixed dual variables.
Example
When you directly want to evaluate the Lagrangian $\mathcal L$ you can also call
LagrangianCost(co, μ, λ)(M,p)
Manopt.LagrangianGradient
— TypeLagrangianGradient{CO,T}
The gradient of the Lagrangian of a ConstrainedManifoldObjective
co
with respect to the variable $p$. The formula reads
\[\operatorname{grad}_p \mathcal L(p; μ, λ) = \operatorname{grad} f(p) + \sum_{i=1}^m μ_i \operatorname{grad} g_i(p) + \sum_{j=1}^n λ_j \operatorname{grad} h_j(p)\]
Fields
co::CO
,μ::T
,λ::T
as mentioned, whereT
represents a vector type.
Constructor
LagrangianGradient(co, μ, λ)
Create a functor for the Lagrangian with fixed dual variables.
Example
When you directly want to evaluate the gradient of the Lagrangian $\operatorname{grad}_p \mathcal L$ you can also call LagrangianGradient(co, μ, λ)(M,p)
or LagrangianGradient(co, μ, λ)(M,X,p)
for the in-place variant.
Manopt.LagrangianHessian
— TypeLagrangianHessian{CO, V, T}
The Hesian of the Lagrangian of a ConstrainedManifoldObjective
co
with respect to the variable $p$. The formula reads
\[\operatorname{Hess}_p \mathcal L(p; μ, λ)[X] = \operatorname{Hess} f(p) + \sum_{i=1}^m μ_i \operatorname{Hess} g_i(p)[X] + \sum_{j=1}^n λ_j \operatorname{Hess} h_j(p)[X]\]
Fields
co::CO
,μ::T
,λ::T
as mentioned, whereT
represents a vector type.
Constructor
LagrangianHessian(co, μ, λ)
Create a functor for the Lagrangian with fixed dual variables.
Example
When you directly want to evaluate the Hessian of the Lagrangian $\operatorname{Hess}_p \mathcal L$ you can also call LagrangianHessian(co, μ, λ)(M, p, X)
or LagrangianHessian(co, μ, λ)(M, Y, p, X)
for the in-place variant.
Access functions
Manopt.equality_constraints_length
— Functionequality_constraints_length(co::ConstrainedManifoldObjective)
Return the number of equality constraints of an ConstrainedManifoldObjective
. This acts transparently through AbstractDecoratedManifoldObjective
s
Manopt.inequality_constraints_length
— Functioninequality_constraints_length(cmo::ConstrainedManifoldObjective)
Return the number of inequality constraints of an ConstrainedManifoldObjective
cmo
. This acts transparently through AbstractDecoratedManifoldObjective
s
Manopt.get_unconstrained_objective
— Functionget_unconstrained_objective(co::ConstrainedManifoldObjective)
Returns the internally stored unconstrained AbstractManifoldObjective
within the ConstrainedManifoldObjective
.
Manopt.get_equality_constraint
— Functionget_equality_constraint(amp::AbstractManoptProblem, p, j=:)
get_equality_constraint(M::AbstractManifold, objective, p, j=:)
Evaluate equality constraints of a ConstrainedManifoldObjective
objective
at point p
and indices j
(by default :
which corresponds to all indices).
Manopt.get_inequality_constraint
— Functionget_inequality_constraint(amp::AbstractManoptProblem, p, j=:)
get_inequality_constraint(M::AbstractManifold, co::ConstrainedManifoldObjective, p, j=:, range=NestedPowerRepresentation())
Evaluate inequality constraints of a ConstrainedManifoldObjective
objective
at point p
and indices j
(by default :
which corresponds to all indices).
Manopt.get_grad_equality_constraint
— Functionget_grad_equality_constraint(amp::AbstractManoptProblem, p, j)
get_grad_equality_constraint(M::AbstractManifold, co::ConstrainedManifoldObjective, p, j, range=NestedPowerRepresentation())
get_grad_equality_constraint!(amp::AbstractManoptProblem, X, p, j)
get_grad_equality_constraint!(M::AbstractManifold, X, co::ConstrainedManifoldObjective, p, j, range=NestedPowerRepresentation())
Evaluate the gradient or gradients of the equality constraint $(\operatorname{grad} h(p))_j$ or $\operatorname{grad} h_j(p)$,
See also the ConstrainedManoptProblem
to specify the range of the gradient.
Manopt.get_grad_inequality_constraint
— Functionget_grad_inequality_constraint(amp::AbstractManoptProblem, p, j=:)
get_grad_inequality_constraint(M::AbstractManifold, co::ConstrainedManifoldObjective, p, j=:, range=NestedPowerRepresentation())
get_grad_inequality_constraint!(amp::AbstractManoptProblem, X, p, j=:)
get_grad_inequality_constraint!(M::AbstractManifold, X, co::ConstrainedManifoldObjective, p, j=:, range=NestedPowerRepresentation())
Evaluate the gradient or gradients of the inequality constraint $(\operatorname{grad} g(p))_j$ or $\operatorname{grad} g_j(p)$,
See also the ConstrainedManoptProblem
to specify the range of the gradient.
Manopt.get_hess_equality_constraint
— Functionget_hess_equality_constraint(amp::AbstractManoptProblem, p, j=:)
get_hess_equality_constraint(M::AbstractManifold, co::ConstrainedManifoldObjective, p, j, range=NestedPowerRepresentation())
get_hess_equality_constraint!(amp::AbstractManoptProblem, X, p, j=:)
get_hess_equality_constraint!(M::AbstractManifold, X, co::ConstrainedManifoldObjective, p, j, range=NestedPowerRepresentation())
Evaluate the Hessian or Hessians of the equality constraint $(\operatorname{Hess} h(p))_j$ or $\operatorname{Hess} h_j(p)$,
See also the ConstrainedManoptProblem
to specify the range of the Hessian.
Manopt.get_hess_inequality_constraint
— Functionget_hess_inequality_constraint(amp::AbstractManoptProblem, p, X, j=:)
get_hess_inequality_constraint(M::AbstractManifold, co::ConstrainedManifoldObjective, p, j=:, range=NestedPowerRepresentation())
get_hess_inequality_constraint!(amp::AbstractManoptProblem, Y, p, j=:)
get_hess_inequality_constraint!(M::AbstractManifold, Y, co::ConstrainedManifoldObjective, p, X, j=:, range=NestedPowerRepresentation())
Evaluate the Hessian or Hessians of the inequality constraint $(\operatorname{Hess} g(p)[X])_j$ or $\operatorname{Hess} g_j(p)[X]$,
See also the ConstrainedManoptProblem
to specify the range of the Hessian.
Manopt.is_feasible
— Functionis_feasible(M::AbstractManifold, cmo::ConstrainedManifoldObjective, p, kwargs...)
Evaluate whether a boint p
on M
is feasible with respect to the ConstrainedManifoldObjective
cmo
. That is for the provided inequality constaints $g: \mathcal M → ℝ^m$ and equality constaints $h: \mathcal M \to ℝ^m$ from within cmo
, the point $p ∈ \mathcal M$ is feasible if
\[g_i(p) ≤ 0, \text{ for all } i=1,…,m\quad\text{ and }\quad h_j(p) = 0, \text{ for all } j=1,…,n.\]
Keyword arguments
check_point::Bool=true
: whether to also verify that `p∈\mathcal M
holds, usingis_point
error::Symbol=:none
: if the point is not feasible, this symbol determines how to report the error.:error
: throws an error:info
: displays the error message as an @info:none
: (default) the function just returns true/false:warn
: displays the error message as a @warning.
The keyword error=
and all other kwargs...
are passed on to is_point
if the point is verfied (see check_point
).
All other keywords are passed on to is_poi
Internal functions
Manopt.get_feasibility_status
— Functionget_feasibility_status(
M::AbstractManifold,
cmo::ConstrainedManifoldObjective,
g = get_inequality_constraints(M, cmo, p),
h = get_equality_constraints(M, cmo, p),
)
Generate a message about the feasibiliy of p
with respect to the ConstrainedManifoldObjective
. You can also provide the evaluated vectors for the values of g
and h
as keyword arguments, in case you had them evaluated before.
Vectorial objectives
Manopt.AbstractVectorFunction
— TypeAbstractVectorFunction{E, FT} <: Function
Represent an abstract vectorial function $f:\mathcal M → ℝ^n$ with an AbstractEvaluationType
E
and an AbstractVectorialType
to specify the format $f$ is implemented as.
Representations of $f$
There are three different representations of $f$, which might be beneficial in one or the other situation:
- the
FunctionVectorialType
storing a single function $f$ that returns a vector, - the
ComponentVectorialType
storing a vector of functions $f_i$ that return a single value each, - the
CoordinateVectorialType
storing functions with respect to a specific basis of the tangent space for gradients and Hessians. Gradients of this type are usually referred to as Jacobians.
For the ComponentVectorialType
imagine that $f$ could also be written using its component functions,
\[f(p) = \bigl( f_1(p), f_2(p), \ldots, f_n(p) \bigr)^{\mathrm{T}}\]
In this representation f
is given as a vector [f1(M,p), f2(M,p), ..., fn(M,p)]
of its component functions. An advantage is that the single components can be evaluated and from this representation one even can directly read of the number n
. A disadvantage might be, that one has to implement a lot of individual (component) functions.
For the FunctionVectorialType
$f$ is implemented as a single function f(M, p)
, that returns an AbstractArray
. And advantage here is, that this is a single function. A disadvantage might be, that if this is expensive even to compute a single component, all of f
has to be evaluated
Manopt.AbstractVectorGradientFunction
— TypeVectorGradientFunction{E, FT, JT, F, J, I} <: AbstractManifoldObjective{E}
Represent an abstract vectorial function $f:\mathcal M → ℝ^n$ that provides a (component wise) gradient. The AbstractEvaluationType
E
indicates the evaluation type, and the AbstractVectorialType
s FT
and JT
the formats in which the function and the gradient are provided, see AbstractVectorFunction
for an explanation.
Manopt.VectorGradientFunction
— TypeVectorGradientFunction{E, FT, JT, F, J, I} <: AbstractVectorGradientFunction{E, FT, JT}
Represent a function $f:\mathcal M → ℝ^n$ including it first derivative, either as a vector of gradients of a Jacobian
And hence has a gradient `\operatorname{grad} f_i(p) ∈ T_{p}\mathcal M
. Putting these gradients into a vector the same way as the functions, yields a ComponentVectorialType
\[\operatorname{grad} f(p) = \Bigl( \operatorname{grad} f_1(p), \operatorname{grad} f_2(p), …, \operatorname{grad} f_n(p) \Bigr)^\mathrm{T} ∈ (T_{p}\mathcal M)^n\]
And advantage here is, that again the single components can be evaluated individually
Fields
value!!::F
: the cost function $f$, which can take different formatscost_type::
AbstractVectorialType
: indicating / storing data for the type off
jacobian!!::G
: the Jacobian of $f$jacobian_type::
AbstractVectorialType
: indicating / storing data for the type of $J_f$parameters
: the numbern
from, the size of the vector $f$ returns.
Constructor
VectorGradientFunction(f, Jf, range_dimension;
evaluation::AbstractEvaluationType=AllocatingEvaluation(),
function_type::AbstractVectorialType=FunctionVectorialType(),
jacobian_type::AbstractVectorialType=FunctionVectorialType(),
)
Create a VectorGradientFunction
of f
and its Jacobian (vector of gradients) Jf
, where f
maps into the Euclidean space of dimension range_dimension
. Their types are specified by the function_type
, and jacobian_type
, respectively. The Jacobian can further be given as an allocating variant or an in-place variant, specified by the evaluation=
keyword.
Manopt.VectorHessianFunction
— TypeVectorHessianFunction{E, FT, JT, HT, F, J, H, I} <: AbstractVectorGradientFunction{E, FT, JT}
Represent a function $f:\mathcal M M → ℝ^n$ including it first derivative, either as a vector of gradients of a Jacobian, and the Hessian, as a vector of Hessians of the component functions.
Both the Jacobian and the Hessian can map into either a sequence of tangent spaces or a single tangent space of the power manifold of length n
.
Fields
value!!::F
: the cost function $f$, which can take different formatscost_type::
AbstractVectorialType
: indicating / string data for the type off
jacobian!!::G
: the Jacobian $J_f$ of $f$jacobian_type::
AbstractVectorialType
: indicating / storing data for the type of $J_f$hessians!!::H
: the Hessians of $f$ (in a component wise sense)hessian_type::
AbstractVectorialType
: indicating / storing data for the type of $H_f$range_dimension
: the numbern
from, the size of the vector $f$ returns.
Constructor
VectorHessianFunction(f, Jf, Hess_f, range_dimension;
evaluation::AbstractEvaluationType=AllocatingEvaluation(),
function_type::AbstractVectorialType=FunctionVectorialType(),
jacobian_type::AbstractVectorialType=FunctionVectorialType(),
hessian_type::AbstractVectorialType=FunctionVectorialType(),
)
Create a VectorHessianFunction
of f
and its Jacobian (vector of gradients) Jf
and (vector of) Hessians, where f
maps into the Euclidean space of dimension range_dimension
. Their types are specified by the function_type
, and jacobian_type
, and hessian_type
, respectively. The Jacobian and Hessian can further be given as an allocating variant or an inplace-variant, specified by the evaluation=
keyword.
Manopt.AbstractVectorialType
— TypeAbstractVectorialType
An abstract type for different representations of a vectorial function $f: \mathcal M → ℝ^m$ and its (component-wise) gradient/Jacobian
Manopt.CoordinateVectorialType
— TypeCoordinateVectorialType{B<:AbstractBasis} <: AbstractVectorialType
A type to indicate that gradient of the constraints is implemented as a Jacobian matrix with respect to a certain basis, that is if the vector function is $f: \mathcal M → ℝ^m$ and we have a basis $\mathcal B$ of $T_p\mathcal M$, at $p∈ \mathcal M$ This can be written as $J_g(p) = (c_1^{\mathrm{T}},…,c_m^{\mathrm{T}})^{\mathrm{T}} \in ℝ^{m,d}$, that is, every row $c_i$ of this matrix is a set of coefficients such that get_coefficients(M, p, c, B)
is the tangent vector $\oepratorname{grad} g_i(p)$ for example $g_i(p) ∈ ℝ^m$ or $\operatorname{grad} g_i(p) ∈ T_p\mathcal M$, $i=1,…,m$.
Fields
basis
anAbstractBasis
to indicate the basis in which Jacobian is expressed.
Constructor
CoordinateVectorialType(basis=DefaultOrthonormalBasis())
Manopt.ComponentVectorialType
— TypeComponentVectorialType <: AbstractVectorialType
A type to indicate that constraints are implemented as component functions, for example $g_i(p) ∈ ℝ^m$ or $\operatorname{grad} g_i(p) ∈ T_p\mathcal M$, $i=1,…,m$.
Manopt.FunctionVectorialType
— TypeFunctionVectorialType{P<:AbstractPowerRepresentation} <: AbstractVectorialType
A type to indicate that constraints are implemented one whole functions, for example $g(p) ∈ ℝ^m$ or $\operatorname{grad} g(p) ∈ (T_p\mathcal M)^m$.
This type internally stores the AbstractPowerRepresentation
, when it makes sense, especially for Hessian and gradient functions.
Access functions
Manopt.get_jacobian
— Functionget_jacobian(M::AbstractManifold, vgf::AbstractVectorGradientFunction, p; kwargs...)
get_jacobian(M::AbstractManifold, J, vgf::AbstractVectorGradientFunction, p; kwargs...)
Compute the Jacobian $J_F ∈ ℝ^{m×n}$ of the AbstractVectorGradientFunction
$F$ at p
on the M
.
There are two interpretations of the Jacobian of a vectorial function $F: \mathcal M → ℝ^m$ on a manifold. Both depend on choosing a basis on the tangent space $T_{p}\mathcal M$ which we denote by $Y_1,…,Y_n$, where n
is the manifold_dimension
(M)
(M)
. We can write any tangent vector $X = \displaystyle\sum_i c_iY_i$
- The Jacobian $J_F$ is the matrix with respect to the basis $Y_1,…,Y_n$ such that
for any $X∈T_{p}\mathcal M$ we have the equality of the differential $DF(p)[X] = Jc$. In other words, the j
th column of $J$ is given by $DF(p)[Y_j]$
- Given the gradients $\operatorname{grad} F_i(p)$ of the component functions $F_i: \mathcal M → ℝ$,
we define the jacobian function as
$math J(X) = \begin{pmatrix} ⟨\operatorname{grad} F_1, X⟩_p\\ ⟨\operatorname{grad} F_1, X⟩_p\\ ⋮\\ ⟨\operatorname{grad} F_1, X⟩_p\end{pmatrix}$
Then either the $j$th column of $J_F$ is given by $J(Y_i)$ or the $i$th row is given by all inner products $\operatorname{grad} F_1, Y_j⟩_p$ of the $i$th gradient function with all basis vectors $Y_j$.
The computation can be computed in-place of J
.
Keyword arguments
basis::AbstractBasis =
get_basis
(vgf)
for theCoordinateVectorialType
of the vectorial functions gradient, this might lead to a change of basis, if this basis and the one the coordinates are given in do not agree.range::AbstractPowerRepresentation =
get_range
(vgf.jacobian_type)
specify the range of the gradients in the case of aFunctionVectorialType
, that is, on which type of power manifold the gradient is given on.
Manopt.get_jacobian!
— Functionget_jacobian(M::AbstractManifold, vgf::AbstractVectorGradientFunction, p; kwargs...)
get_jacobian(M::AbstractManifold, J, vgf::AbstractVectorGradientFunction, p; kwargs...)
Compute the Jacobian $J_F ∈ ℝ^{m×n}$ of the AbstractVectorGradientFunction
$F$ at p
on the M
.
There are two interpretations of the Jacobian of a vectorial function $F: \mathcal M → ℝ^m$ on a manifold. Both depend on choosing a basis on the tangent space $T_{p}\mathcal M$ which we denote by $Y_1,…,Y_n$, where n
is the manifold_dimension
(M)
(M)
. We can write any tangent vector $X = \displaystyle\sum_i c_iY_i$
- The Jacobian $J_F$ is the matrix with respect to the basis $Y_1,…,Y_n$ such that
for any $X∈T_{p}\mathcal M$ we have the equality of the differential $DF(p)[X] = Jc$. In other words, the j
th column of $J$ is given by $DF(p)[Y_j]$
- Given the gradients $\operatorname{grad} F_i(p)$ of the component functions $F_i: \mathcal M → ℝ$,
we define the jacobian function as
$math J(X) = \begin{pmatrix} ⟨\operatorname{grad} F_1, X⟩_p\\ ⟨\operatorname{grad} F_1, X⟩_p\\ ⋮\\ ⟨\operatorname{grad} F_1, X⟩_p\end{pmatrix}$
Then either the $j$th column of $J_F$ is given by $J(Y_i)$ or the $i$th row is given by all inner products $\operatorname{grad} F_1, Y_j⟩_p$ of the $i$th gradient function with all basis vectors $Y_j$.
The computation can be computed in-place of J
.
Keyword arguments
basis::AbstractBasis =
get_basis
(vgf)
for theCoordinateVectorialType
of the vectorial functions gradient, this might lead to a change of basis, if this basis and the one the coordinates are given in do not agree.range::AbstractPowerRepresentation =
get_range
(vgf.jacobian_type)
specify the range of the gradients in the case of aFunctionVectorialType
, that is, on which type of power manifold the gradient is given on.
Manopt.get_value
— Functionget_value(M::AbstractManifold, vgf::AbstractVectorFunction, p[, i=:])
get_value!(M::AbstractManifold, V, vgf::AbstractVectorFunction, p[, i=:])
Evaluate the vector function VectorGradientFunction
vgf
at p
. The range
can be used to specify a potential range, but is currently only present for consistency.
The i
can be a linear index, you can provide
- a single integer
- a
UnitRange
to specify a range to be returned like1:3
- a
BitVector
specifying a selection - a
AbstractVector{<:Integer}
to specify indices :
to return the vector of all gradients, which is also the default
This function can perform the evaluation inplace of V
.
Manopt.get_value_function
— Functionget_value_function(vgf::VectorGradientFunction, recursive=false)
return the internally stored function computing get_value
.
Base.length
— Methodlength(vgf::AbstractVectorFunction)
Return the length of the vector the function $f: \mathcal M → ℝ^n$ maps into, that is the number n
.
Internal functions
Manopt._to_iterable_indices
— Function_to_iterable_indices(A::AbstractVector, i)
Convert index i
(integer, colon, vector of indices, etc.) for array A
into an iterable structure of indices.
Manopt._change_basis!
— Function_change_basis!(M::AbstractManifold, JF, p, from_basis::B1, to_basis::B; X=zero_vector(M,p))
Given a jacobian matrix JF
on a manifold M
at p
with respect to the from_basis
in the tangent space of p
on M
. Change the basis of the Jacobian to to_basis
in place of JF
.
Keyword Arguments
X
a temporary vector to store a generated vector, before decomposing it again with respect to the new basis
ManifoldsBase.get_basis
— Functionget_basis(::AbstractVectorialType)
Return a basis that fits a vector function representation.
For the case, where some vectorial data is stored with respect to a basis, this function returns the corresponding basis, most prominently for the CoordinateVectorialType
.
If a type is not with respect to a certain basis, the DefaultOrthonormalBasis
is returned.
Manopt.get_range
— Functionget_range(::AbstractVectorialType)
Return an abstract power manifold representation that fits a vector function's range. Most prominently a FunctionVectorialType
returns its internal range.
Otherwise the default NestedPowerRepresentation
()
is used to work on a vector of data.
Subproblem objective
This objective can be use when the objective of a sub problem solver still needs access to the (outer/main) objective.
Manopt.AbstractManifoldSubObjective
— TypeAbstractManifoldSubObjective{O<:AbstractManifoldObjective} <: AbstractManifoldObjective
An abstract type for objectives of sub problems within a solver but still store the original objective internally to generate generic objectives for sub solvers.
Access functions
Manopt.get_objective_cost
— Functionget_objective_cost(M, amso::AbstractManifoldSubObjective, p)
Evaluate the cost of the (original) objective stored within the sub objective.
Manopt.get_objective_gradient
— FunctionX = get_objective_gradient(M, amso::AbstractManifoldSubObjective, p)
get_objective_gradient!(M, X, amso::AbstractManifoldSubObjective, p)
Evaluate the gradient of the (original) objective stored within the sub objective amso
.
Manopt.get_objective_hessian
— FunctionY = get_objective_Hessian(M, amso::AbstractManifoldSubObjective, p, X)
get_objective_Hessian!(M, Y, amso::AbstractManifoldSubObjective, p, X)
Evaluate the Hessian of the (original) objective stored within the sub objective amso
.
Manopt.get_objective_preconditioner
— FunctionY = get_objective_preconditioner(M, amso::AbstractManifoldSubObjective, p, X)
get_objective_preconditioner(M, Y, amso::AbstractManifoldSubObjective, p, X)
Evaluate the Hessian of the (original) objective stored within the sub objective amso
.
- 1This cache requires
LRUCache.jl
to be loaded as well.