Conjugate gradient descent
Manopt.conjugate_gradient_descent
— Functionconjugate_gradient_descent(M, f, grad_f, p=rand(M))
conjugate_gradient_descent!(M, f, grad_f, p)
conjugate_gradient_descent(M, gradient_objective, p)
conjugate_gradient_descent!(M, gradient_objective, p; kwargs...)
perform a conjugate gradient based descent-
\[p_{k+1} = \operatorname{retr}_{p_k} \bigl( s_kδ_k \bigr),\]
where $\operatorname{retr}$ denotes a retraction on the Manifold
M
and one can employ different rules to update the descent direction $δ_k$ based on the last direction $δ_{k-1}$ and both gradients $\operatorname{grad}f(x_k)$,$\operatorname{grad} f(x_{k-1})$. The Stepsize
$s_k$ may be determined by a Linesearch
.
Alternatively to f
and grad_f
you can provide the AbstractManifoldGradientObjective
gradient_objective
directly.
Available update rules are SteepestDescentCoefficientRule
, which yields a gradient_descent
, ConjugateDescentCoefficient
(the default), DaiYuanCoefficientRule
, FletcherReevesCoefficient
, HagerZhangCoefficient
, HestenesStiefelCoefficient
, LiuStoreyCoefficient
, and PolakRibiereCoefficient
. These can all be combined with a ConjugateGradientBealeRestartRule
rule.
They all compute $β_k$ such that this algorithm updates the search direction as
\[δ_k=\operatorname{grad}f(p_k) + β_k \delta_{k-1}\]
Input
M::
AbstractManifold
: a Riemannian manifold $\mathcal M$
f
: a cost function $f: \mathcal M→ ℝ$ implemented as(M, p) -> v
grad_f
: the (Riemannian) gradient $\operatorname{grad}f$: \mathcal M → T_{p}\mathcal M of f as a function(M, p) -> X
or a function(M, X, p) -> X
computingX
in-placep
: a point on the manifold $\mathcal M$
Keyword arguments
coefficient::DirectionUpdateRule=
ConjugateDescentCoefficient
()
: rule to compute the descent direction update coefficient $β_k$, as a functor, where the resulting function maps are(amp, cgs, k) -> β
withamp
anAbstractManoptProblem
,cgs
is theConjugateGradientDescentState
, andk
is the current iterate.evaluation=
AllocatingEvaluation
()
: specify whether the functions that return an array, for example a point or a tangent vector, work by allocating its result (AllocatingEvaluation
) or whether they modify their input argument to return the result therein (InplaceEvaluation
). Since usually the first argument is the manifold, the modified argument is the second.retraction_method=
default_retraction_method
(M, typeof(p))
: a retraction $\operatorname{retr}$ to use, see the section on retractionsstepsize=
ArmijoLinesearch
()
: a functor inheriting fromStepsize
to determine a step sizestopping_criterion=
StopAfterIteration
(500)
|
StopWhenGradientNormLess
(1e-8)
: a functor indicating that the stopping criterion is fulfilledvector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
If you provide the ManifoldGradientObjective
directly, the evaluation=
keyword is ignored. The decorations are still applied to the objective.
Output
The obtained approximate minimizer $p^*$. To obtain the whole final state of the solver, see get_solver_return
for details, especially the return_state=
keyword.
Manopt.conjugate_gradient_descent!
— Functionconjugate_gradient_descent(M, f, grad_f, p=rand(M))
conjugate_gradient_descent!(M, f, grad_f, p)
conjugate_gradient_descent(M, gradient_objective, p)
conjugate_gradient_descent!(M, gradient_objective, p; kwargs...)
perform a conjugate gradient based descent-
\[p_{k+1} = \operatorname{retr}_{p_k} \bigl( s_kδ_k \bigr),\]
where $\operatorname{retr}$ denotes a retraction on the Manifold
M
and one can employ different rules to update the descent direction $δ_k$ based on the last direction $δ_{k-1}$ and both gradients $\operatorname{grad}f(x_k)$,$\operatorname{grad} f(x_{k-1})$. The Stepsize
$s_k$ may be determined by a Linesearch
.
Alternatively to f
and grad_f
you can provide the AbstractManifoldGradientObjective
gradient_objective
directly.
Available update rules are SteepestDescentCoefficientRule
, which yields a gradient_descent
, ConjugateDescentCoefficient
(the default), DaiYuanCoefficientRule
, FletcherReevesCoefficient
, HagerZhangCoefficient
, HestenesStiefelCoefficient
, LiuStoreyCoefficient
, and PolakRibiereCoefficient
. These can all be combined with a ConjugateGradientBealeRestartRule
rule.
They all compute $β_k$ such that this algorithm updates the search direction as
\[δ_k=\operatorname{grad}f(p_k) + β_k \delta_{k-1}\]
Input
M::
AbstractManifold
: a Riemannian manifold $\mathcal M$
f
: a cost function $f: \mathcal M→ ℝ$ implemented as(M, p) -> v
grad_f
: the (Riemannian) gradient $\operatorname{grad}f$: \mathcal M → T_{p}\mathcal M of f as a function(M, p) -> X
or a function(M, X, p) -> X
computingX
in-placep
: a point on the manifold $\mathcal M$
Keyword arguments
coefficient::DirectionUpdateRule=
ConjugateDescentCoefficient
()
: rule to compute the descent direction update coefficient $β_k$, as a functor, where the resulting function maps are(amp, cgs, k) -> β
withamp
anAbstractManoptProblem
,cgs
is theConjugateGradientDescentState
, andk
is the current iterate.evaluation=
AllocatingEvaluation
()
: specify whether the functions that return an array, for example a point or a tangent vector, work by allocating its result (AllocatingEvaluation
) or whether they modify their input argument to return the result therein (InplaceEvaluation
). Since usually the first argument is the manifold, the modified argument is the second.retraction_method=
default_retraction_method
(M, typeof(p))
: a retraction $\operatorname{retr}$ to use, see the section on retractionsstepsize=
ArmijoLinesearch
()
: a functor inheriting fromStepsize
to determine a step sizestopping_criterion=
StopAfterIteration
(500)
|
StopWhenGradientNormLess
(1e-8)
: a functor indicating that the stopping criterion is fulfilledvector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
If you provide the ManifoldGradientObjective
directly, the evaluation=
keyword is ignored. The decorations are still applied to the objective.
Output
The obtained approximate minimizer $p^*$. To obtain the whole final state of the solver, see get_solver_return
for details, especially the return_state=
keyword.
State
Manopt.ConjugateGradientDescentState
— TypeConjugateGradientState <: AbstractGradientSolverState
specify options for a conjugate gradient descent algorithm, that solves a [DefaultManoptProblem
].
Fields
p::P
: a point on the manifold $\mathcal M$storing the current iterateX::T
: a tangent vector at the point $p$ on the manifold $\mathcal M$δ
: the current descent direction, also a tangent vectorβ
: the current update coefficient rule, see .coefficient
: function to determine the newβ
stepsize::Stepsize
: a functor inheriting fromStepsize
to determine a step sizestop::StoppingCriterion
: a functor indicating that the stopping criterion is fulfilledretraction_method::AbstractRetractionMethod
: a retraction $\operatorname{retr}$ to use, see the section on retractionsvector_transport_method::AbstractVectorTransportMethodP
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
Constructor
ConjugateGradientState(M::AbstractManifold; kwargs...)
where the last five fields can be set by their names as keyword and the X
can be set to a tangent vector type using the keyword initial_gradient
which defaults to zero_vector(M,p)
, and δ
is initialized to a copy of this vector.
Keyword arguments
The following fields from above <re keyword arguments
initial_gradient=
zero_vector
(M, p)
: a tangent vector at the point $p$ on the manifold $\mathcal M$p=
rand
(M)
: a point on the manifold $\mathcal M$to specify the initial valuecoefficient=[
ConjugateDescentCoefficient](@ref)
(): specify a CG coefficient, see also the [
ManifoldDefaultsFactory`](@ref).stepsize=
default_stepsize
(M, ConjugateGradientDescentState; retraction_method=retraction_method)
: a functor inheriting fromStepsize
to determine a step sizestopping_criterion=
StopAfterIteration
(500)
|
StopWhenGradientNormLess
(1e-8)
): a functor indicating that the stopping criterion is fulfilledretraction_method=
default_retraction_method
(M, typeof(p))
: a retraction $\operatorname{retr}$ to use, see the section on retractionsvector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
See also
conjugate_gradient_descent
, DefaultManoptProblem
, ArmijoLinesearch
Available coefficients
The update rules act as DirectionUpdateRule
, which internally always first evaluate the gradient itself.
Manopt.ConjugateDescentCoefficient
— FunctionConjugateDescentCoefficient()
ConjugateDescentCoefficient(M::AbstractManifold)
Compute the (classical) conjugate gradient coefficient based on [Fle87] adapted to manifolds
Denote the last iterate and gradient by $p_k,X_k$, the current iterate and gradient by $p_{k+1}, X_{k+1}$, respectively, as well as the last update direction by $δ_k$.
Then the coefficient reads
\[β_k = \frac{\lVert X_{k+1} \rVert_{p_{k+1}}^2}{⟨-δ_k,X_k⟩_{p_k}}\]
This function generates a ManifoldDefaultsFactory
for ConjugateDescentCoefficientRule
. For default values, that depend on the manifold, this factory postpones the construction until the manifold from for example a corresponding AbstractManoptSolverState
is available.
Manopt.ConjugateGradientBealeRestart
— FunctionConjugateGradientBealeRestart(direction_update::Union{DirectionUpdateRule,ManifoldDefaultsFactory}; kwargs...)
ConjugateGradientBealeRestart(M::AbstractManifold, direction_update::Union{DirectionUpdateRule,ManifoldDefaultsFactory}; kwargs...)
Compute a conjugate gradient coefficient with a potential restart, when two directions are nearly orthogonal. See [HZ06, page 12] (in the preprint, page 46 in Journal page numbers). This method is named after E. Beale from his proceedings paper in 1972 [Bea72]. This method acts as a decorator to any existing DirectionUpdateRule
direction_update
.
Denote the last iterate and gradient by $p_k,X_k$, the current iterate and gradient by $p_{k+1}, X_{k+1}$, respectively, as well as the last update direction by $δ_k$.
Then a restart is performed, hence $β_k = 0$ returned if
\[ \frac{⟨X_{k+1}, \mathcal T_{p_{k+1}←p_k}X_k⟩}{\lVert X_k \rVert_{p_k}} > ε,\]
where $ε$ is the threshold
, which is set by default to 0.2
, see [Pow77]
Input
direction_update
: aDirectionUpdateRule
or a correspondingManifoldDefaultsFactory
to produce such a rule.
Keyword arguments
vector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transportsthreshold=0.2
This function generates a ManifoldDefaultsFactory
for ConjugateGradientBealeRestartRule
. For default values, that depend on the manifold, this factory postpones the construction until the manifold from for example a corresponding AbstractManoptSolverState
is available.
Manopt.DaiYuanCoefficient
— FunctionDaiYuanCoefficient(; kwargs...)
DaiYuanCoefficient(M::AbstractManifold; kwargs...)
Computes an update coefficient for the conjugate_gradient_descent
algorithm based on [DY99] adapted to Riemannian manifolds.
Denote the last iterate and gradient by $p_k,X_k$, the current iterate and gradient by $p_{k+1}, X_{k+1}$, respectively, as well as the last update direction by $δ_k$.
Let $ν_k = X_{k+1} - \mathcal T_{p_{k+1}←p_k}X_k$, where $\mathcal T_{⋅←⋅}$ denotes a vector transport.
Then the coefficient reads
\[β_k = \frac{\lVert X_{k+1} \rVert_{p_{k+1}}^2}{⟨\mathcal T_{p_{k+1}←p_k}δ_k, ν_k⟩_{p_{k+1}}}\]
Keyword arguments
vector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
This function generates a ManifoldDefaultsFactory
for DaiYuanCoefficientRule
. For default values, that depend on the manifold, this factory postpones the construction until the manifold from for example a corresponding AbstractManoptSolverState
is available.
Manopt.FletcherReevesCoefficient
— FunctionFletcherReevesCoefficient()
FletcherReevesCoefficient(M::AbstractManifold)
Computes an update coefficient for the conjugate_gradient_descent
algorithm based on [FR64] adapted to manifolds
Denote the last iterate and gradient by $p_k,X_k$, the current iterate and gradient by $p_{k+1}, X_{k+1}$, respectively, as well as the last update direction by $δ_k$.
Then the coefficient reads
\[β_k = \frac{\lVert X_{k+1} \rVert_{p_{k+1}}^2}{\lVert X_k \rVert_{p_{k}}^2}.\]
This function generates a ManifoldDefaultsFactory
for FletcherReevesCoefficientRule
. For default values, that depend on the manifold, this factory postpones the construction until the manifold from for example a corresponding AbstractManoptSolverState
is available.
Manopt.HagerZhangCoefficient
— FunctionHagerZhangCoefficient(; kwargs...)
HagerZhangCoefficient(M::AbstractManifold; kwargs...)
Computes an update coefficient for the conjugate_gradient_descent
algorithm based on [FR64] adapted to manifolds
Denote the last iterate and gradient by $p_k,X_k$, the current iterate and gradient by $p_{k+1}, X_{k+1}$, respectively, as well as the last update direction by $δ_k$.
Let $ν_k = X_{k+1} - \mathcal T_{p_{k+1}←p_k}X_k$, where $\mathcal T_{⋅←⋅}$ denotes a vector transport.
Then the coefficient reads
\[β_k = \Bigl⟨ν_k - \frac{2\lVert ν_k \rVert_{p_{k+1}}^2}{⟨\mathcal T_{p_{k+1}←p_k}δ_k, ν_k⟩_{p_{k+1}}} \mathcal T_{p_{k+1}←p_k}δ_k, \frac{X_{k+1}}{⟨\mathcal T_{p_{k+1}←p_k}δ_k, ν_k⟩_{p_{k+1}}} \Bigr⟩_{p_{k+1}}.\]
This method includes a numerical stability proposed by those authors.
Keyword arguments
vector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
This function generates a ManifoldDefaultsFactory
for HagerZhangCoefficientRule
. For default values, that depend on the manifold, this factory postpones the construction until the manifold from for example a corresponding AbstractManoptSolverState
is available.
Manopt.HestenesStiefelCoefficient
— FunctionHestenesStiefelCoefficient(; kwargs...)
HestenesStiefelCoefficient(M::AbstractManifold; kwargs...)
Computes an update coefficient for the conjugate_gradient_descent
algorithm based on [HS52] adapted to manifolds
Denote the last iterate and gradient by $p_k,X_k$, the current iterate and gradient by $p_{k+1}, X_{k+1}$, respectively, as well as the last update direction by $δ_k$.
Let $ν_k = X_{k+1} - \mathcal T_{p_{k+1}←p_k}X_k$, where $\mathcal T_{⋅←⋅}$ denotes a vector transport.
Then the coefficient reads
\[β_k = \frac{⟨ X_{k+1}, ν_k ⟩_{p_{k+1}}}{⟨ \mathcal T_{p_{k+1}←p_k}δ_k, ν_k⟩_{p_{k+1}}}.\]
Keyword arguments
vector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
This function generates a ManifoldDefaultsFactory
for HestenesStiefelCoefficientRule
. For default values, that depend on the manifold, this factory postpones the construction until the manifold from for example a corresponding AbstractManoptSolverState
is available.
Manopt.LiuStoreyCoefficient
— FunctionLiuStoreyCoefficient(; kwargs...)
LiuStoreyCoefficient(M::AbstractManifold; kwargs...)
Computes an update coefficient for the conjugate_gradient_descent
algorithm based on [LS91] adapted to manifolds
Denote the last iterate and gradient by $p_k,X_k$, the current iterate and gradient by $p_{k+1}, X_{k+1}$, respectively, as well as the last update direction by $δ_k$.
Let $ν_k = X_{k+1} - \mathcal T_{p_{k+1}←p_k}X_k$, where $\mathcal T_{⋅←⋅}$ denotes a vector transport.
Then the coefficient reads
\[β_k = - \frac{⟨ X_{k+1},ν_k ⟩_{p_{k+1}}}{⟨ δ_k,X_k ⟩_{p_k}}.\]
Keyword arguments
vector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
This function generates a ManifoldDefaultsFactory
for LiuStoreyCoefficientRule
. For default values, that depend on the manifold, this factory postpones the construction until the manifold from for example a corresponding AbstractManoptSolverState
is available.
Manopt.PolakRibiereCoefficient
— FunctionPolakRibiereCoefficient(; kwargs...)
PolakRibiereCoefficient(M::AbstractManifold; kwargs...)
Computes an update coefficient for the conjugate_gradient_descent
algorithm based on [PR69] adapted to Riemannian manifolds.
Denote the last iterate and gradient by $p_k,X_k$, the current iterate and gradient by $p_{k+1}, X_{k+1}$, respectively, as well as the last update direction by $δ_k$.
Let $ν_k = X_{k+1} - \mathcal T_{p_{k+1}←p_k}X_k$, where $\mathcal T_{⋅←⋅}$ denotes a vector transport.
Then the coefficient reads
\[β_k = \frac{⟨ X_{k+1}, ν_k ⟩_{p_{k+1}}}{\lVert X_k \rVert_{{p_k}}^2}.\]
Keyword arguments
vector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
This function generates a ManifoldDefaultsFactory
for PolakRibiereCoefficientRule
. For default values, that depend on the manifold, this factory postpones the construction until the manifold from for example a corresponding AbstractManoptSolverState
is available.
Manopt.SteepestDescentCoefficient
— FunctionSteepestDescentCoefficient()
SteepestDescentCoefficient(M::AbstractManifold)
Computes an update coefficient for the conjugate_gradient_descent
algorithm so that is falls back to a gradient_descent
method, that is
\[β_k = 0\]
This function generates a ManifoldDefaultsFactory
for SteepestDescentCoefficient
. For default values, that depend on the manifold, this factory postpones the construction until the manifold from for example a corresponding AbstractManoptSolverState
is available.
Internal rules for coefficients
Manopt.ConjugateGradientBealeRestartRule
— TypeConjugateGradientBealeRestartRule <: DirectionUpdateRule
A functor (problem, state, k) -> β_k
to compute the conjugate gradient update coefficient based on a restart idea of [Bea72], following [HZ06, page 12] adapted to manifolds.
Fields
direction_update::DirectionUpdateRule
: the actual rule, that is restartedthreshold::Real
: a threshold for the restart check.vector_transport_method::AbstractVectorTransportMethodP
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
Constructor
ConjugateGradientBealeRestartRule(
direction_update::Union{DirectionUpdateRule,ManifoldDefaultsFactory};
kwargs...
)
ConjugateGradientBealeRestartRule(
M::AbstractManifold=DefaultManifold(),
direction_update::Union{DirectionUpdateRule,ManifoldDefaultsFactory};
kwargs...
)
Construct the Beale restart coefficient update rule adapted to manifolds.
Input
M::
AbstractManifold
: a Riemannian manifold $\mathcal M$ If this is not provided, the
DefaultManifold()
fromManifoldsBase.jl
is used.direction_update
: aDirectionUpdateRule
or a correspondingManifoldDefaultsFactory
to produce such a rule.
Keyword arguments
vector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transportsthreshold=0.2
See also
Manopt.DaiYuanCoefficientRule
— TypeDaiYuanCoefficientRule <: DirectionUpdateRule
A functor (problem, state, k) -> β_k
to compute the conjugate gradient update coefficient based on [DY99] adapted to manifolds
Fields
vector_transport_method::AbstractVectorTransportMethodP
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
Constructor
DaiYuanCoefficientRule(M::AbstractManifold; kwargs...)
Construct the Dai—Yuan coefficient update rule.
Keyword arguments
vector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
See also
Manopt.FletcherReevesCoefficientRule
— TypeFletcherReevesCoefficientRule <: DirectionUpdateRule
A functor (problem, state, k) -> β_k
to compute the conjugate gradient update coefficient based on [FR64] adapted to manifolds
Constructor
FletcherReevesCoefficientRule()
Construct the Fletcher—Reeves coefficient update rule.
See also
Manopt.HagerZhangCoefficientRule
— TypeHagerZhangCoefficientRule <: DirectionUpdateRule
A functor (problem, state, k) -> β_k
to compute the conjugate gradient update coefficient based on [HZ05] adapted to manifolds
Fields
vector_transport_method::AbstractVectorTransportMethodP
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
Constructor
HagerZhangCoefficientRule(M::AbstractManifold; kwargs...)
Construct the Hager-Zang coefficient update rule based on [HZ05] adapted to manifolds.
Keyword arguments
vector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
See also
Manopt.HestenesStiefelCoefficientRule
— TypeHestenesStiefelCoefficientRuleRule <: DirectionUpdateRule
A functor (problem, state, k) -> β_k
to compute the conjugate gradient update coefficient based on [HS52] adapted to manifolds
Fields
vector_transport_method::AbstractVectorTransportMethodP
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
Constructor
HestenesStiefelCoefficientRuleRule(M::AbstractManifold; kwargs...)
Construct the Hestenes-Stiefel coefficient update rule based on [HS52] adapted to manifolds.
Keyword arguments
vector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
See also
Manopt.LiuStoreyCoefficientRule
— TypeLiuStoreyCoefficientRule <: DirectionUpdateRule
A functor (problem, state, k) -> β_k
to compute the conjugate gradient update coefficient based on [LS91] adapted to manifolds
Fields
vector_transport_method::AbstractVectorTransportMethodP
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
Constructor
LiuStoreyCoefficientRule(M::AbstractManifold; kwargs...)
Construct the Lui-Storey coefficient update rule based on [LS91] adapted to manifolds.
Keyword arguments
vector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
See also
Manopt.PolakRibiereCoefficientRule
— TypePolakRibiereCoefficientRule <: DirectionUpdateRule
A functor (problem, state, k) -> β_k
to compute the conjugate gradient update coefficient based on [PR69] adapted to manifolds
Fields
vector_transport_method::AbstractVectorTransportMethodP
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
Constructor
PolakRibiereCoefficientRule(M::AbstractManifold; kwargs...)
Construct the Dai—Yuan coefficient update rule.
Keyword arguments
vector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
See also
Manopt.SteepestDescentCoefficientRule
— TypeSteepestDescentCoefficientRule <: DirectionUpdateRule
A functor (problem, state, k) -> β_k
to compute the conjugate gradient update coefficient to obtain the steepest direction, that is $β_k=0$.
Constructor
SteepestDescentCoefficientRule()
Construct the steepest descent coefficient update rule.
See also
Technical details
The conjugate_gradient_descent
solver requires the following functions of a manifold to be available
- A
retract!
(M, q, p, X)
; it is recommended to set thedefault_retraction_method
to a favourite retraction. If this default is set, aretraction_method=
does not have to be specified. - A
vector_transport_to!
M, Y, p, X, q)
; it is recommended to set thedefault_vector_transport_method
to a favourite retraction. If this default is set, avector_transport_method=
orvector_transport_method_dual=
(for $\mathcal N$) does not have to be specified. - By default gradient descent uses
ArmijoLinesearch
which requiresmax_stepsize
(M)
to be set and an implementation ofinner
(M, p, X)
. - By default the stopping criterion uses the
norm
as well, to stop when the norm of the gradient is small, but if you implementedinner
, the norm is provided already. - By default the tangent vector storing the gradient is initialized calling
zero_vector
(M,p)
.
Literature
- [Bea72]
- E. M. Beale. A derivation of conjugate gradients. In: Numerical methods for nonlinear optimization, edited by F. A. Lootsma (Academic Press, London, London, 1972); pp. 39–43.
- [DY99]
- Y. H. Dai and Y. Yuan. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property. SIAM Journal on Optimization 10, 177–182 (1999).
- [Fle87]
- R. Fletcher. Practical Methods of Optimization. 2 Edition, A Wiley-Interscience Publication (John Wiley & Sons Ltd., 1987).
- [FR64]
- R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The Computer Journal 7, 149–154 (1964).
- [HZ06]
- W. W. Hager and H. Zhang. A survey of nonlinear conjugate gradient methods. Pacific Journal of Optimization 2, 35–58 (2006).
- [HZ05]
- W. W. Hager and H. Zhang. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search. SIAM Journal on Optimization 16, 170–192 (2005).
- [HS52]
- M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards 49, 409 (1952).
- [LS91]
- Y. Liu and C. Storey. Efficient generalized conjugate gradient algorithms, part 1: Theory. Journal of Optimization Theory and Applications 69, 129–137 (1991).
- [PR69]
- E. Polak and G. Ribière. Note sur la convergence de méthodes de directions conjuguées. Revue française d’informatique et de recherche opérationnelle 3, 35–43 (1969).
- [Pow77]
- M. J. Powell. Restart procedures for the conjugate gradient method. Mathematical Programming 12, 241–254 (1977).