Particle swarm optimization
Manopt.particle_swarm
— Functionpatricle_swarm(M, f; kwargs...)
patricle_swarm(M, f, swarm; kwargs...)
patricle_swarm(M, mco::AbstractManifoldCostObjective; kwargs..)
patricle_swarm(M, mco::AbstractManifoldCostObjective, swarm; kwargs..)
particle_swarm!(M, f, swarm; kwargs...)
particle_swarm!(M, mco::AbstractManifoldCostObjective, swarm; kwargs..)
perform the particle swarm optimization algorithm (PSO) to solve
\[\operatorname*{arg\,min}_{p ∈ \mathcal M} f(p)\]
PSO starts with an initial swarm
[BIA10] of points on the manifold. If no swarm
is provided, the swarm_size
keyword is used to generate random points. The computation can be perfomed in-place of swarm
.
To this end, a swarm $S = \{s_1, \ldots, s_n\}$ of particles is moved around the manifold M
in the following manner. For every particle $s_k^{(i)}$ the new particle velocities $X_k^{(i)}$ are computed in every step $i$ of the algorithm by
\[X_k^{(i)} = ω \mathcal T_{s_k^{(i)←s_k^{(i-1)}} X_k^{(i-1)} + c r_1 \operatorname{retr}^{-1}_{s_k^{(i)}}(p_k^{(i)}) + s r_2 \operatorname{retr}^{-1}_{s_k^{(i)}}(p),\]
where
- $s_k^{(i)}$ is the current particle position,
- $ω$ denotes the inertia,
- $c$ and $s$ are a cognitive and a social weight, respectively,
- $r_j$, $j=1,2$ are random factors which are computed new for each particle and step
- \mathcal T_{⋅←⋅} is a vector transport, and
- \operatorname{retr}^{-1} is an inverse retraction
Then the position of the particle is updated as
\[s_k^{(i+1)} = \operatorname{retr}_{s_k^{(i)}}(X_k^{(i)}),\]
Then the single particles best entries $p_k^{(i)}$ are updated as
\[p_k^{(i+1)} = \begin{cases} s_k^{(i+1)}, & \text{if } F(s_k^{(i+1)})<F(p_{k}^{(i)}),\\ p_{k}^{(i)}, & \text{else,} \end{cases}\]
and the global best position
\[g^{(i+1)} = \begin{cases} p_k^{(i+1)}, & \text{if } F(p_k^{(i+1)})<F(g_{k}^{(i)}),\\ g_{k}^{(i)}, & \text{else,} \end{cases}\]
Input
M::
AbstractManifold
: a Riemannian manifold $\mathcal M$
f
: a cost function $f: \mathcal M→ ℝ$ implemented as(M, p) -> v
swarm = [rand(M) for _ in 1:swarm_size]
: an initial swarm of points.
Instead of a cost function f
you can also provide an AbstractManifoldCostObjective
mco
.
Keyword Arguments
cognitive_weight=1.4
: a cognitive weight factorinertia=0.65
: the inertia of the particlesinverse_retraction_method=
default_inverse_retraction_method
(M, typeof(p))
: an inverse retraction $\operatorname{retr}^{-1}$ to use, see the section on retractions and their inversesretraction_method=
default_retraction_method
(M, typeof(p))
: a retraction $\operatorname{retr}$ to use, see the section on retractionssocial_weight=1.4
: a social weight factorswarm_size=100
: swarm size, if it should be generated randomlystopping_criterion=
StopAfterIteration
(500)
|
StopWhenChangeLess
(1e-4)
: a functor indicating that the stopping criterion is fulfilledvector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transportsvelocity
: a set of tangent vectors (of typeAbstractVector{T}
) representing the velocities of the particles, per default a random tangent vector per initial position
All other keyword arguments are passed to decorate_state!
for state decorators or decorate_objective!
for objective decorators, respectively. If you provide the objective directly, these decorations can still be specified
Output
The obtained approximate minimizer $p^*$. To obtain the whole final state of the solver, see get_solver_return
for details, especially the return_state=
keyword.
Manopt.particle_swarm!
— Functionpatricle_swarm(M, f; kwargs...)
patricle_swarm(M, f, swarm; kwargs...)
patricle_swarm(M, mco::AbstractManifoldCostObjective; kwargs..)
patricle_swarm(M, mco::AbstractManifoldCostObjective, swarm; kwargs..)
particle_swarm!(M, f, swarm; kwargs...)
particle_swarm!(M, mco::AbstractManifoldCostObjective, swarm; kwargs..)
perform the particle swarm optimization algorithm (PSO) to solve
\[\operatorname*{arg\,min}_{p ∈ \mathcal M} f(p)\]
PSO starts with an initial swarm
[BIA10] of points on the manifold. If no swarm
is provided, the swarm_size
keyword is used to generate random points. The computation can be perfomed in-place of swarm
.
To this end, a swarm $S = \{s_1, \ldots, s_n\}$ of particles is moved around the manifold M
in the following manner. For every particle $s_k^{(i)}$ the new particle velocities $X_k^{(i)}$ are computed in every step $i$ of the algorithm by
\[X_k^{(i)} = ω \mathcal T_{s_k^{(i)←s_k^{(i-1)}} X_k^{(i-1)} + c r_1 \operatorname{retr}^{-1}_{s_k^{(i)}}(p_k^{(i)}) + s r_2 \operatorname{retr}^{-1}_{s_k^{(i)}}(p),\]
where
- $s_k^{(i)}$ is the current particle position,
- $ω$ denotes the inertia,
- $c$ and $s$ are a cognitive and a social weight, respectively,
- $r_j$, $j=1,2$ are random factors which are computed new for each particle and step
- \mathcal T_{⋅←⋅} is a vector transport, and
- \operatorname{retr}^{-1} is an inverse retraction
Then the position of the particle is updated as
\[s_k^{(i+1)} = \operatorname{retr}_{s_k^{(i)}}(X_k^{(i)}),\]
Then the single particles best entries $p_k^{(i)}$ are updated as
\[p_k^{(i+1)} = \begin{cases} s_k^{(i+1)}, & \text{if } F(s_k^{(i+1)})<F(p_{k}^{(i)}),\\ p_{k}^{(i)}, & \text{else,} \end{cases}\]
and the global best position
\[g^{(i+1)} = \begin{cases} p_k^{(i+1)}, & \text{if } F(p_k^{(i+1)})<F(g_{k}^{(i)}),\\ g_{k}^{(i)}, & \text{else,} \end{cases}\]
Input
M::
AbstractManifold
: a Riemannian manifold $\mathcal M$
f
: a cost function $f: \mathcal M→ ℝ$ implemented as(M, p) -> v
swarm = [rand(M) for _ in 1:swarm_size]
: an initial swarm of points.
Instead of a cost function f
you can also provide an AbstractManifoldCostObjective
mco
.
Keyword Arguments
cognitive_weight=1.4
: a cognitive weight factorinertia=0.65
: the inertia of the particlesinverse_retraction_method=
default_inverse_retraction_method
(M, typeof(p))
: an inverse retraction $\operatorname{retr}^{-1}$ to use, see the section on retractions and their inversesretraction_method=
default_retraction_method
(M, typeof(p))
: a retraction $\operatorname{retr}$ to use, see the section on retractionssocial_weight=1.4
: a social weight factorswarm_size=100
: swarm size, if it should be generated randomlystopping_criterion=
StopAfterIteration
(500)
|
StopWhenChangeLess
(1e-4)
: a functor indicating that the stopping criterion is fulfilledvector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transportsvelocity
: a set of tangent vectors (of typeAbstractVector{T}
) representing the velocities of the particles, per default a random tangent vector per initial position
All other keyword arguments are passed to decorate_state!
for state decorators or decorate_objective!
for objective decorators, respectively. If you provide the objective directly, these decorations can still be specified
Output
The obtained approximate minimizer $p^*$. To obtain the whole final state of the solver, see get_solver_return
for details, especially the return_state=
keyword.
State
Manopt.ParticleSwarmState
— TypeParticleSwarmState{P,T} <: AbstractManoptSolverState
Describes a particle swarm optimizing algorithm, with
Fields
cognitive_weight
: a cognitive weight factorinertia
: the inertia of the particlesinverse_retraction_method::AbstractInverseRetractionMethod
: an inverse retraction $\operatorname{retr}^{-1}$ to use, see the section on retractions and their inversesretraction_method::AbstractRetractionMethod
: a retraction $\operatorname{retr}$ to use, see the section on retractionssocial_weight
: a social weight factorstop::StoppingCriterion
: a functor indicating that the stopping criterion is fulfilledvector_transport_method::AbstractVectorTransportMethodP
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transportsvelocity
: a set of tangent vectors (of typeAbstractVector{T}
) representing the velocities of the particles
Internal and temporary fields
cognitive_vector
: temporary storage for a tangent vector related tocognitive_weight
p::P
: a point on the manifold $\mathcal M$ storing the best point visited by all particlespositional_best
: storing the best position $p_i$ every single swarm participant visitedq::P
: a point on the manifold $\mathcal M$ serving as temporary storage for interims results; avoids allocationssocial_vec
: temporary storage for a tangent vector related tosocial_weight
swarm
: a set of points (of typeAbstractVector{P}
) on a manifold $\{a_i\}_{i=1}^{N}$
Constructor
ParticleSwarmState(M, initial_swarm, velocity; kawrgs...)
construct a particle swarm solver state for the manifold M
starting with the initial population initial_swarm
with velocities
. The p
used in the following defaults is the type of one point from the swarm.
Keyword arguments
cognitive_weight=1.4
inertia=0.65
inverse_retraction_method=
default_inverse_retraction_method
(M, typeof(p))
: an inverse retraction $\operatorname{retr}^{-1}$ to use, see the section on retractions and their inversesretraction_method=
default_retraction_method
(M, typeof(p))
: a retraction $\operatorname{retr}$ to use, see the section on retractionssocial_weight=1.4
stopping_criterion=
StopAfterIteration
(500)
|
StopWhenChangeLess
(1e-4)
: a functor indicating that the stopping criterion is fulfilledvector_transport_method=
default_vector_transport_method
(M, typeof(p))
: a vector transport $\mathcal T_{⋅←⋅}$ to use, see the section on vector transports
See also
Stopping criteria
Manopt.StopWhenSwarmVelocityLess
— TypeStopWhenSwarmVelocityLess <: StoppingCriterion
Stopping criterion for particle_swarm
, when the velocity of the swarm is less than a threshold.
Fields
threshold
: the thresholdat_iteration
: store the iteration the stopping criterion was (last) fulfilledreason
: store the reason why the stopping criterion was fulfilled, seeget_reason
velocity_norms
: interim vector to store the norms of the velocities before computing its norm
Constructor
StopWhenSwarmVelocityLess(tolerance::Float64)
initialize the stopping criterion to a certain tolerance
.
Technical details
The particle_swarm
solver requires the following functions of a manifold to be available
- A
retract!
(M, q, p, X)
; it is recommended to set thedefault_retraction_method
to a favourite retraction. If this default is set, aretraction_method=
does not have to be specified. - An
inverse_retract!
(M, X, p, q)
; it is recommended to set thedefault_inverse_retraction_method
to a favourite retraction. If this default is set, ainverse_retraction_method=
does not have to be specified. - A
vector_transport_to!
M, Y, p, X, q)
; it is recommended to set thedefault_vector_transport_method
to a favourite retraction. If this default is set, avector_transport_method=
does not have to be specified. - By default the stopping criterion uses the
norm
as well, to stop when the norm of the gradient is small, but if you implementedinner
, the norm is provided already. - Tangent vectors storing the social and cognitive vectors are initialized calling
zero_vector
(M,p)
. - A
copyto!
(M, q, p)
andcopy
(M,p)
for points. - The
distance
(M, p, q)
when using the default stopping criterion, which usesStopWhenChangeLess
.
Literature
- [BIA10]
- P. B. Borckmans, M. Ishteva and P.-A. Absil. A Modified Particle Swarm Optimization Algorithm for the Best Low Multilinear Rank Approximation of Higher-Order Tensors. In: 7th International Conference on Swarm INtelligence (Springer Berlin Heidelberg, 2010); pp. 13–23.