Subgradient method
Manopt.subgradient_method — Functionsubgradient_method(M, f, ∂f, p=rand(M); kwargs...)
subgradient_method(M, sgo, p=rand(M); kwargs...)
subgradient_method!(M, f, ∂f, p; kwargs...)
subgradient_method!(M, sgo, p; kwargs...)perform a subgradient method $p^{(k+1)} = \operatorname{retr}\bigl(p^{(k)}, s^{(k)}∂f(p^{(k)})\bigr)$, where $\operatorname{retr}$ is a retraction, $s^{(k)}$ is a step size.
Though the subgradient might be set valued, the argument ∂f should always return one element from the subgradient, but not necessarily deterministic. For more details see [FO98].
Input
M::AbstractManifold: a Riemannian manifold $\mathcal M$f: a cost function $f: \mathcal M→ ℝ$ implemented as(M, p) -> v∂f: the (sub)gradient $∂ f: \mathcal M → T\mathcal M$ of $f$p: a point on the manifold $\mathcal M$
alternatively to f and ∂f a ManifoldSubgradientObjective sgo can be provided.
Keyword arguments
evaluation=AllocatingEvaluation(): specify whether the functions that return an array, for example a point or a tangent vector, work by allocating its result (AllocatingEvaluation) or whether they modify their input argument to return the result therein (InplaceEvaluation). Since usually the first argument is the manifold, the modified argument is the second.retraction_method=default_retraction_method(M, typeof(p)): a retraction $\operatorname{retr}$ to use, see the section on retractionsstepsize=default_stepsize(M, SubGradientMethodState): a functor inheriting fromStepsizeto determine a step sizestopping_criterion=StopAfterIteration(5000): a functor indicating that the stopping criterion is fulfilledX=zero_vector(M, p): a tangent vector at the point $p$ on the manifold $\mathcal M$to specify the representation of a tangent vector
and the ones that are passed to decorate_state! for decorators.
Output
the obtained (approximate) minimizer $p^*$, see get_solver_return for details
Manopt.subgradient_method! — Functionsubgradient_method(M, f, ∂f, p=rand(M); kwargs...)
subgradient_method(M, sgo, p=rand(M); kwargs...)
subgradient_method!(M, f, ∂f, p; kwargs...)
subgradient_method!(M, sgo, p; kwargs...)perform a subgradient method $p^{(k+1)} = \operatorname{retr}\bigl(p^{(k)}, s^{(k)}∂f(p^{(k)})\bigr)$, where $\operatorname{retr}$ is a retraction, $s^{(k)}$ is a step size.
Though the subgradient might be set valued, the argument ∂f should always return one element from the subgradient, but not necessarily deterministic. For more details see [FO98].
Input
M::AbstractManifold: a Riemannian manifold $\mathcal M$f: a cost function $f: \mathcal M→ ℝ$ implemented as(M, p) -> v∂f: the (sub)gradient $∂ f: \mathcal M → T\mathcal M$ of $f$p: a point on the manifold $\mathcal M$
alternatively to f and ∂f a ManifoldSubgradientObjective sgo can be provided.
Keyword arguments
evaluation=AllocatingEvaluation(): specify whether the functions that return an array, for example a point or a tangent vector, work by allocating its result (AllocatingEvaluation) or whether they modify their input argument to return the result therein (InplaceEvaluation). Since usually the first argument is the manifold, the modified argument is the second.retraction_method=default_retraction_method(M, typeof(p)): a retraction $\operatorname{retr}$ to use, see the section on retractionsstepsize=default_stepsize(M, SubGradientMethodState): a functor inheriting fromStepsizeto determine a step sizestopping_criterion=StopAfterIteration(5000): a functor indicating that the stopping criterion is fulfilledX=zero_vector(M, p): a tangent vector at the point $p$ on the manifold $\mathcal M$to specify the representation of a tangent vector
and the ones that are passed to decorate_state! for decorators.
Output
the obtained (approximate) minimizer $p^*$, see get_solver_return for details
State
Manopt.SubGradientMethodState — TypeSubGradientMethodState <: AbstractManoptSolverStatestores option values for a subgradient_method solver
Fields
p::P: a point on the manifold $\mathcal M$ storing the current iteratep_star: optimal valueretraction_method::AbstractRetractionMethod: a retraction $\operatorname{retr}$ to use, see the section on retractionsstepsize::Stepsize: a functor inheriting fromStepsizeto determine a step sizestop::StoppingCriterion: a functor indicating that the stopping criterion is fulfilledX: the current element from the possible subgradients atpthat was last evaluated.
Constructor
SubGradientMethodState(M::AbstractManifold; kwargs...)Initialise the Subgradient method state
Keyword arguments
retraction_method=default_retraction_method(M, typeof(p)): a retraction $\operatorname{retr}$ to use, see the section on retractionsp=rand(M): a point on the manifold $\mathcal M$ to specify the initial valuestepsize=default_stepsize(M, SubGradientMethodState): a functor inheriting fromStepsizeto determine a step sizestopping_criterion=StopAfterIteration(5000): a functor indicating that the stopping criterion is fulfilledX=zero_vector(M, p): a tangent vector at the point $p$ on the manifold $\mathcal M$to specify the representation of a tangent vector
For DebugActions and RecordActions to record (sub)gradient, its norm and the step sizes, see the gradient descent actions.
Technical details
The subgradient_method solver requires the following functions of a manifold to be available
- A
retract!(M, q, p, X); it is recommended to set thedefault_retraction_methodto a favourite retraction. If this default is set, aretraction_method=does not have to be specified.
Literature
- [FO98]
- O. Ferreira and P. R. Oliveira. Subgradient algorithm on Riemannian manifolds. Journal of Optimization Theory and Applications 97, 93–104 (1998).