Adjoint Differentials
Manopt.AdjDforwardLogs — Method.ξ = AdjDforwardLogs(M,x,ν)compute the adjoibnt differential of forwardLogs $F$ orrucirng, in the power manifold array, the differential of the function
\[F_i(x) = \sum_{j\in\mathcal I_i} \log_{x_i} x_j\]
where $i$ runs over all indices of the Power manifold M and $\mathcal I_i$ denotes the forward neighbors of $i$ Let $n$ be the number dimensions of the Power manifold (i.e. length(size(x))). Then the input tangent vector lies on the manifold $\mathcal M' = \mathcal M^n$.
Input
M– aPowermanifoldx– aPowPoint.ν– aPowTVectorfrom $T_X\mathcal M'$, where $X = (x,...,x)\in\mathcal M'$ is an $n$-fold copy of $x$ where \mathcal N (x,...,x)N.
Ouput
- ξ – resulting tangent vector in $T_x\mathcal M$ representing the adjoint differentials of the logs.
Manopt.AdjDxExp — Method.Manopt.AdjDxGeo — Method.Manopt.AdjDxLog — Method.Manopt.AdjDyGeo — Method.Manopt.AdjDyLog — Method.Manopt.AdjDξExp — Method.AdjDξExp(M,x,ξ,η)computes the adjoint of $D_\xi\exp_x\xi[\eta]$. Note that $\xi\in T_\xi(T_x\mathcal M) = T_x\mathcal M$ is still a tangent vector.
See also