Adjoint Differentials
Manopt.AdjDforwardLogs
— Method.ξ = AdjDforwardLogs(M,x,ν)
compute the adjoibnt differential of forwardLogs
$F$ orrucirng, in the power manifold array, the differential of the function
\[F_i(x) = \sum_{j\in\mathcal I_i} \log_{x_i} x_j\]
where $i$ runs over all indices of the Power
manifold M
and $\mathcal I_i$ denotes the forward neighbors of $i$ Let $n$ be the number dimensions of the Power
manifold (i.e. length(size(x)
)). Then the input tangent vector lies on the manifold $\mathcal M' = \mathcal M^n$.
Input
M
– aPower
manifoldx
– aPowPoint
.ν
– aPowTVector
from $T_X\mathcal M'$, where $X = (x,...,x)\in\mathcal M'$ is an $n$-fold copy of $x$ where \mathcal N (x,...,x)N.
Ouput
- ξ – resulting tangent vector in $T_x\mathcal M$ representing the adjoint differentials of the logs.
Manopt.AdjDxExp
— Method.Manopt.AdjDxGeo
— Method.Manopt.AdjDxLog
— Method.Manopt.AdjDyGeo
— Method.Manopt.AdjDyLog
— Method.Manopt.AdjDξExp
— Method.AdjDξExp(M,x,ξ,η)
computes the adjoint of $D_\xi\exp_x\xi[\eta]$. Note that $\xi\in T_\xi(T_x\mathcal M) = T_x\mathcal M$ is still a tangent vector.
See also