Differentials
Manopt.DforwardLogs
— Method.ν = DforwardLogs(M,x,ξ)
compute the differenital of forwardLogs
$F$ on the Power
manifold M
at x
and direction ξ
, in the power manifold array, the differential of the function
\[F_i(x) = \sum_{j\in\mathcal I_i} \log_{x_i} x_j$, \quad i \in \mathcal G,\]
where $\mathcal G$ is the set of indices of the Power
manifold M
and $\mathcal I_i$ denotes the forward neighbors of $i$.
Input
M
– aPower
manifoldx
– aPowPoint
.ξ
– aPowTVector
.
Ouput
ν
– resulting tangent vector in $T_x\mathcal N$ representing the differentials of the logs, where $\mathcal N$ is thw power manifold with the number of dimensions added tosize(x)
.
Manopt.DxExp
— Method.Manopt.DxGeo
— Method.Manopt.DxLog
— Method.Manopt.DyGeo
— Method.Manopt.DyLog
— Method.Manopt.DξExp
— Method.DξExp(M,x,ξ,η)
computes $D_\xi\exp_x\xi[\eta]$. Note that $\xi\in T_\xi(T_x\mathcal M) = T_x\mathcal M$ is still a tangent vector.
See also