Differentials
Manopt.DforwardLogs — Method.ν = DforwardLogs(M,x,ξ)compute the differenital of forwardLogs $F$ on the Power manifold M at x and direction ξ , in the power manifold array, the differential of the function
\[F_i(x) = \sum_{j\in\mathcal I_i} \log_{x_i} x_j$, \quad i \in \mathcal G,\]
where $\mathcal G$ is the set of indices of the Power manifold M and $\mathcal I_i$ denotes the forward neighbors of $i$.
Input
M– aPowermanifoldx– aPowPoint.ξ– aPowTVector.
Ouput
ν– resulting tangent vector in $T_x\mathcal N$ representing the differentials of the logs, where $\mathcal N$ is thw power manifold with the number of dimensions added tosize(x).
Manopt.DxExp — Method.Manopt.DxGeo — Method.Manopt.DxLog — Method.Manopt.DyGeo — Method.Manopt.DyLog — Method.Manopt.DξExp — Method.DξExp(M,x,ξ,η)computes $D_\xi\exp_x\xi[\eta]$. Note that $\xi\in T_\xi(T_x\mathcal M) = T_x\mathcal M$ is still a tangent vector.
See also