Proximal Maps
For a function $\varphi\colon\mathcal M \to\mathbb R$ the proximal map is defined as
where $d_{\mathcal M}\colon \mathcal M \times \mathcal M \to \mathbb R$ denotes the geodesic distance on (\mathcal M). While it might still be difficult to compute the minimizer, there are several proximal maps known (locally) in closed form. Furthermore if $x^{\star} \in\mathcal M$ is a minimizer of $\varphi$, then
i.e. a minimizer is a fixed point of the proximal map.
This page lists all proximal maps available within Manopt. To add you own, just extend the functions/proximalMaps.jl
file.
Manopt.proxCollaborativeTV
— Function.proxCollaborativeTV(M,λ,x [,p=2,q=1])
compute the prox of the collaborative TV prox for x on the Power
manifold, i.e. of the function
where $\mathcal G$ is the set of indices for $x\in\mathcal M$ and $\mathcal I_i$ is the set of its forward neighbors. This is adopted from the paper by Duran, Möller, Sbert, Cremers: Collaborative Total Variation: A General Framework for Vectorial TV Models (arxiv: 1508.01308), where the most inner norm is not on a manifold but on a vector space, see their Example 3 for details.
Manopt.proxDistance
— Method.y = proxDistance(M,λ,f,x [,p=2])
compute the proximal map $\operatorname{prox}_{\lambda\varphi}$ with parameter λ of $\varphi(x) = \frac{1}{p}d_{\mathcal M}^p(f,x)$.
Input
M
– aManifold
$\mathcal M$λ
– the prox parameterf
– anMPoint
$f\in\mathcal M$ (the data)x
– the argument of the proximal map
Optional argument
p
– (2
) exponent of the distance.
Ouput
y
– the result of the proximal map of $\varphi$
Manopt.proxParallelTV
— Method.ξ = proxParallelTV(M,λ,x [,p=1])
compute the proximal maps $\operatorname{prox}_{\lambda\varphi}$ of all forward differences orrucirng in the power manifold array, i.e. $\varphi(xi,xj) = d_{\mathcal M}^p(xi,xj)$ with xi
and xj
are array elemets of x
and j = i+e_k
, where e_k
is the $k$th unitvector. The parameter λ
is the prox parameter.
Input
Optional
(default is given in brackets)
p
– (1
) exponent of the distance of the TV term
Ouput
y
– resulting of ArrayPowPoint
s with all mentioned proximal points evaluated (in a parallel within the arrays elements).
See also proxTV
Manopt.proxTV
— Function.ξ = proxTV(M,λ,x [,p=1])
compute the proximal maps $\operatorname{prox}_{\lambda\varphi}$ of all forward differences orrucirng in the power manifold array, i.e. $\varphi(xi,xj) = d_{\mathcal M}^p(xi,xj)$ with xi
and xj
are array elemets of x
and j = i+e_k
, where e_k
is the $k$th unitvector. The parameter λ
is the prox parameter.
Input
Optional
(default is given in brackets)
p
– (1) exponent of the distance of the TV term
Ouput
y
– resulting ofPowPoint
with all mentioned proximal points evaluated (in a cylic order).
Manopt.proxTV
— Method.(y1,y2) = proxTV(M,λ,(x1,x2) [,p=1])
Compute the proximal map $\operatorname{prox}_{\lambda\varphi}$ of $\varphi(x,y) = d_{\mathcal M}^p(x,y)$ with parameter λ
.
Input
Optional
(default is given in brackets)
p
– (1) exponent of the distance of the TV term
Ouput
(y1,y2)
– resulting tuple ofMPoint
of the $\operatorname{prox}_{\lambda\varphi}($(x1,x2)
$)$
Manopt.proxTV2
— Function.ξ = proxTV2(M,λ,x,[p])
compute the proximal maps $\operatorname{prox}_{\lambda\varphi}$ of all centered second order differences orrucirng in the power manifold array, i.e. $\varphi(x_k,x_i,x_j) = d_2(x_k,x_i.x_j)$, where $k,j$ are backward and forward neighbors (along any dimension in the array of x
). The parameter λ
is the prox parameter.
Input
Optional
(default is given in brackets)
p
– (1
) exponent of the distance of the TV term
Ouput
y
– resulting ofPowPoint
with all mentioned proximal points evaluated (in a cylic order).
Manopt.proxTV2
— Method.(y1,y2,y3) = proxTV2(M,λ,(x1,x2,x3),[p=1], kwargs...)
Compute the proximal map $\operatorname{prox}_{\lambda\varphi}$ of $\varphi(x_1,x_2,x_3) = d_{\mathcal M}^p(c(x_1,x_3),x_2)$ with parameter λ
>0, where $c(x,z)$ denotes the mid point of a shortest geodesic from x1
to x3
that is closest to x2
.
Input
M
– a manifoldλ
– a real value, parameter of the proximal map(x1,x2,x3)
– a tuple of threeMPoint
sp
– (1
) exponent of the distance of the TV term
Optional
kwargs...
– parameters for the internal subGradientMethod
(if M
is neither Euclidean
nor Circle
, since for these a closed form is given)
Output
(y1,y2,y3)
– resulting tuple ofMPoint
s of the proximal map