Proximal Maps
For a function $\varphi\colon\mathcal M \to\mathbb R$ the proximal map is defined as
where $d_{\mathcal M}\colon \mathcal M \times \mathcal M \to \mathbb R$ denotes the geodesic distance on (\mathcal M). While it might still be difficult to compute the minimizer, there are several proximal maps known (locally) in closed form. Furthermore if $x^{\star} \in\mathcal M$ is a minimizer of $\varphi$, then
i.e. a minimizer is a fixed point of the proximal map.
This page lists all proximal maps available within Manopt. To add you own, just extend the functions/proximalMaps.jl file.
Manopt.proxCollaborativeTV — Function.proxCollaborativeTV(M,λ,x [,p=2,q=1])compute the prox of the collaborative TV prox for x on the Power manifold, i.e. of the function
where $\mathcal G$ is the set of indices for $x\in\mathcal M$ and $\mathcal I_i$ is the set of its forward neighbors. This is adopted from the paper by Duran, Möller, Sbert, Cremers: Collaborative Total Variation: A General Framework for Vectorial TV Models (arxiv: 1508.01308), where the most inner norm is not on a manifold but on a vector space, see their Example 3 for details.
Manopt.proxDistance — Method.y = proxDistance(M,λ,f,x [,p=2])compute the proximal map $\operatorname{prox}_{\lambda\varphi}$ with parameter λ of $\varphi(x) = \frac{1}{p}d_{\mathcal M}^p(f,x)$.
Input
M– aManifold$\mathcal M$λ– the prox parameterf– anMPoint$f\in\mathcal M$ (the data)x– the argument of the proximal map
Optional argument
p– (2) exponent of the distance.
Ouput
y– the result of the proximal map of $\varphi$
Manopt.proxParallelTV — Method.ξ = proxParallelTV(M,λ,x [,p=1])compute the proximal maps $\operatorname{prox}_{\lambda\varphi}$ of all forward differences orrucirng in the power manifold array, i.e. $\varphi(xi,xj) = d_{\mathcal M}^p(xi,xj)$ with xi and xj are array elemets of x and j = i+e_k, where e_k is the $k$th unitvector. The parameter λ is the prox parameter.
Input
Optional
(default is given in brackets)
p– (1) exponent of the distance of the TV term
Ouput
y– resulting of ArrayPowPoints with all mentioned proximal points evaluated (in a parallel within the arrays elements).
See also proxTV
Manopt.proxTV — Function.ξ = proxTV(M,λ,x [,p=1])compute the proximal maps $\operatorname{prox}_{\lambda\varphi}$ of all forward differences orrucirng in the power manifold array, i.e. $\varphi(xi,xj) = d_{\mathcal M}^p(xi,xj)$ with xi and xj are array elemets of x and j = i+e_k, where e_k is the $k$th unitvector. The parameter λ is the prox parameter.
Input
Optional
(default is given in brackets)
p– (1) exponent of the distance of the TV term
Ouput
y– resulting ofPowPointwith all mentioned proximal points evaluated (in a cylic order).
Manopt.proxTV — Method.(y1,y2) = proxTV(M,λ,(x1,x2) [,p=1])Compute the proximal map $\operatorname{prox}_{\lambda\varphi}$ of $\varphi(x,y) = d_{\mathcal M}^p(x,y)$ with parameter λ.
Input
Optional
(default is given in brackets)
p– (1) exponent of the distance of the TV term
Ouput
(y1,y2)– resulting tuple ofMPointof the $\operatorname{prox}_{\lambda\varphi}($(x1,x2)$)$
Manopt.proxTV2 — Function.ξ = proxTV2(M,λ,x,[p])compute the proximal maps $\operatorname{prox}_{\lambda\varphi}$ of all centered second order differences orrucirng in the power manifold array, i.e. $\varphi(x_k,x_i,x_j) = d_2(x_k,x_i.x_j)$, where $k,j$ are backward and forward neighbors (along any dimension in the array of x). The parameter λ is the prox parameter.
Input
Optional
(default is given in brackets)
p– (1) exponent of the distance of the TV term
Ouput
y– resulting ofPowPointwith all mentioned proximal points evaluated (in a cylic order).
Manopt.proxTV2 — Method.(y1,y2,y3) = proxTV2(M,λ,(x1,x2,x3),[p=1], kwargs...)Compute the proximal map $\operatorname{prox}_{\lambda\varphi}$ of $\varphi(x_1,x_2,x_3) = d_{\mathcal M}^p(c(x_1,x_3),x_2)$ with parameter λ>0, where $c(x,z)$ denotes the mid point of a shortest geodesic from x1 to x3 that is closest to x2.
Input
M– a manifoldλ– a real value, parameter of the proximal map(x1,x2,x3)– a tuple of threeMPointsp– (1) exponent of the distance of the TV term
Optional
kwargs... – parameters for the internal subGradientMethod (if M is neither Euclidean nor Circle, since for these a closed form is given)
Output
(y1,y2,y3)– resulting tuple ofMPoints of the proximal map