The $1$-dimensional sphere $\mathbb S^1$ represented by angles
The circle $\mathbb S^1$ possesses the following instances of the abstract types Manifold
, MPoint
, and TVector
.
Manopt.Circle
— Type.Circle <: Manifold
The one-dimensional manifold $\mathbb S^1$ represented by angles. Note that one can also use the $n$-dimensional sphere with $n=1$ to obtain the same manifold represented by unit vectors in $\mathbb R^2$.
Abbreviation
S1
Constructor
Circle()
construct a circle
Manopt.S1Point
— Type.S1Point <: MPoint
a point $x\in\mathbb S^1$ represented by an angle getValue(x)
$\in[-\pi,\pi)$, usually referred to as “cyclic“ or “phase” data.
Manopt.S1TVector
— Type.S1TVector <: TVector
a tangent vector $\xi\in\mathbb S^1$ represented by a real value getValue(ξ)
$\in\mathbb R$.
Functions
Base.exp
— Function.Base.log
— Method.LinearAlgebra.dot
— Method.LinearAlgebra.norm
— Method.Manopt.distance
— Method.distance(M,x,y)
return the distance two cyclic data items, which is given by $\lvert (x-y)_{2\pi} \rvert $, where $(\cdot)_{2\pi}$ is the symmetric remainder modulo $2\pi$, see symRem
.
Manopt.embed
— Method.Manopt.manifoldDimension
— Method.manifoldDimension(M)
return the dimension of the Circle
manifold, i.e., 1.
Manopt.manifoldDimension
— Method.Manopt.opposite
— Method.Manopt.parallelTransport
— Method.Manopt.project
— Method.project(M,x,v)
project a number v on the tangent space of the S1Point
x
.
Manopt.randomMPoint
— Method.Manopt.randomTVector
— Function.Manopt.symRem
— Function.symRem(x,[T=π])
symmetric remainder of x
with respect to the interall 2*T
, i.e. (x+T)%2T
, where the default for T
is $\pi$
Manopt.tangentONB
— Method.(Ξ,κ) = tangentONB(M,x,y)
compute an ONB within the tangent space $T_x\mathcal M$ such that $\xi=\log_xy$ is the first vector and compute the eigenvalues of the curvature tensor $R(\Xi,\dot g)\dot g$, where $g=g_{x,\xi}$ is the geodesic with $g(0)=x$, $\dot g(0) = \xi$, i.e. $\kappa_1$ corresponding to $\Xi_1=\xi$ is zero.
See also
Manopt.tangentONB
— Method.(Ξ,κ) = tangentONB(M,x,ξ)
compute an ONB within the tangent space $T_x\mathcal M$ such that $\xi$ is the first vector and compute the eigenvalues of the curvature tensor $R(\Xi,\dot g)\dot g$, where $g=g_{x,\xi}$ is the geodesic with $g(0)=x$, $\dot g(0) = \xi$, i.e. $\kappa_1$ corresponding to $\Xi_1=\xi$ is zero.
See also
Manopt.typicalDistance
— Method.typicalDistance(M)
returns the typical distance on the Circle
M
: π.
Manopt.validateMPoint
— Method.Manopt.validateTVector
— Method.Manopt.zeroTVector
— Method.