The $1$-dimensional sphere $\mathbb S^1$ represented by angles
The circle $\mathbb S^1$ possesses the following instances of the abstract types Manifold, MPoint, and TVector.
Manopt.Circle — Type.Circle <: ManifoldThe one-dimensional manifold $\mathbb S^1$ represented by angles. Note that one can also use the $n$-dimensional sphere with $n=1$ to obtain the same manifold represented by unit vectors in $\mathbb R^2$.
Abbreviation
S1
Constructor
Circle()construct a circle
Manopt.S1Point — Type.S1Point <: MPointa point $x\in\mathbb S^1$ represented by an angle getValue(x)$\in[-\pi,\pi)$, usually referred to as “cyclic“ or “phase” data.
Manopt.S1TVector — Type.S1TVector <: TVectora tangent vector $\xi\in\mathbb S^1$ represented by a real value getValue(ξ)$\in\mathbb R$.
Functions
Base.exp — Function.Base.log — Method.LinearAlgebra.dot — Method.LinearAlgebra.norm — Method.Manopt.distance — Method.distance(M,x,y)return the distance two cyclic data items, which is given by $\lvert (x-y)_{2\pi} \rvert $, where $(\cdot)_{2\pi}$ is the symmetric remainder modulo $2\pi$, see symRem.
Manopt.embed — Method.Manopt.manifoldDimension — Method.manifoldDimension(M)return the dimension of the Circle manifold, i.e., 1.
Manopt.manifoldDimension — Method.Manopt.opposite — Method.Manopt.parallelTransport — Method.Manopt.project — Method.project(M,x,v)project a number v on the tangent space of the S1Point x.
Manopt.randomMPoint — Method.Manopt.randomTVector — Function.Manopt.symRem — Function.symRem(x,[T=π])symmetric remainder of x with respect to the interall 2*T, i.e. (x+T)%2T, where the default for T is $\pi$
Manopt.tangentONB — Method.(Ξ,κ) = tangentONB(M,x,y)compute an ONB within the tangent space $T_x\mathcal M$ such that $\xi=\log_xy$ is the first vector and compute the eigenvalues of the curvature tensor $R(\Xi,\dot g)\dot g$, where $g=g_{x,\xi}$ is the geodesic with $g(0)=x$, $\dot g(0) = \xi$, i.e. $\kappa_1$ corresponding to $\Xi_1=\xi$ is zero.
See also
Manopt.tangentONB — Method.(Ξ,κ) = tangentONB(M,x,ξ)compute an ONB within the tangent space $T_x\mathcal M$ such that $\xi$ is the first vector and compute the eigenvalues of the curvature tensor $R(\Xi,\dot g)\dot g$, where $g=g_{x,\xi}$ is the geodesic with $g(0)=x$, $\dot g(0) = \xi$, i.e. $\kappa_1$ corresponding to $\Xi_1=\xi$ is zero.
See also
Manopt.typicalDistance — Method.typicalDistance(M)returns the typical distance on the Circle M: π.
Manopt.validateMPoint — Method.Manopt.validateTVector — Method.Manopt.zeroTVector — Method.