The $n$-dimensional Euclidean Space $\mathbb R^n$
The Euclidean space serves as a fallback to standard methods or as a part of a Product
. Let's start with the following instances of the abstract types Manifold
, MPoint
, and TVector
.
Manopt.Euclidean
— Type.Euclidean <: Manifold
The manifold $\mathcal M = \mathbb R^n$ of the $n$-dimensional Euclidean vector space. We employ the notation $\langle\cdot,\cdot\rangle$ for the inner product and $\lVert\cdot\rVert_2$ for its induced norm.
Abbreviation
Rn
Constructor
Euclidean(n)
construct the n-dimensional Euclidean space $\mathbb R^n$.
Manopt.RnPoint
— Type.RnPoint <: MPoint
the point $x\in\mathcal M$ for $\mathcal M=\mathbb R^n$ represented by an $n$-dimensional Vector{T}
, where T <: AbstractFloat
.
Manopt.RnTVector
— Type.RnTVector <: TVector
the tangent vector $\xi \in T_x\mathcal M$ for $\mathcal M=\mathbb R^n$ represented by an $n$-dimensional Vector{T}
, where T <: AbstractFloat
.
Functions
Base.exp
— Method.exp(M,x,ξ[, t=1.0])
compute the exponential map on the Euclidean
manifold M
, i.e. $x+t*\xi$, where the scaling parameter t
is optional.
Base.log
— Method.log(M,x,y)
computes the logarithmic map on the Euclidean
manifold M
, i.e. $y-x$.
LinearAlgebra.dot
— Method.dot(M,x,ξ,ν)
Computes the Euclidean inner product of ξ
and ν
, i.e. $\langle\xi,\nu\rangle = \displaystyle\sum_{k=1}^n \xi_k\nu_k$.
Manopt.distance
— Method.distance(M,x,y)
compute the Euclidean distance $\lVert x - y\rVert$
Manopt.injectivityRadius
— Method.injectivityRadius(M)
return the injectivity radius of the Euclidean
manifold M
$=\mathbb R^n$.
Manopt.manifoldDimension
— Method.manifoldDimension(M)
return the manifold dimension of the Euclidean
manifold M
, i.e. the length of the vectors stored in M.dimension
, i.e. $n$.
Manopt.manifoldDimension
— Method.manifoldDimension(x)
return the manifold dimension of the RnPoint
x
, i.e. $n$.
Manopt.parallelTransport
— Method.parallelTransport(M,x,y,ξ)
compute the parallel transport the Euclidean
manifold M
, which is the identity.
Manopt.project
— Method.project(M,x,v)
project a $n$-dimensional Vector{T}
v on the tangent space of the RnPoint{T}
x
. Since the tangent space is identical to the $\mathbb R^n$, the mapping can be realized with the identity, i.e. $\operatorname{project}(M,x,v) = v$.
Manopt.randomMPoint
— Function.Manopt.tangentONB
— Method.(Ξ,κ) = tangentONB(M,x,y)
compute an ONB within the tangent space $T_x\mathcal M$ at the MPoint
on the Euclidean
manifold M
, such that $\xi=\log_xy$ is the first vector and compute the eigenvalues of the curvature tensor $R(\Xi,\dot g)\dot g$, where $g=g_{x,\xi}$ is the geodesic with $g(0)=x$, $\dot g(0) = \xi$, i.e. $\kappa_1$ corresponding to $\Xi_1=\xi$ is zero.
See also
Manopt.typicalDistance
— Method.typicalDistance(M)
returns the typical distance on the Euclidean
manifold M
: $\sqrt{n}$.
Manopt.validateMPoint
— Method.Manopt.validateTVector
— Method.Manopt.zeroTVector
— Method.