The $n$-dimensional Euclidean Space $\mathbb R^n$
The Euclidean space serves as a fallback to standard methods or as a part of a Product. Let's start with the following instances of the abstract types Manifold, MPoint, and TVector.
Manopt.Euclidean — Type.Euclidean <: ManifoldThe manifold $\mathcal M = \mathbb R^n$ of the $n$-dimensional Euclidean vector space. We employ the notation $\langle\cdot,\cdot\rangle$ for the inner product and $\lVert\cdot\rVert_2$ for its induced norm.
Abbreviation
Rn
Constructor
Euclidean(n)construct the n-dimensional Euclidean space $\mathbb R^n$.
Manopt.RnPoint — Type.RnPoint <: MPointthe point $x\in\mathcal M$ for $\mathcal M=\mathbb R^n$ represented by an $n$-dimensional Vector{T}, where T <: AbstractFloat.
Manopt.RnTVector — Type.RnTVector <: TVectorthe tangent vector $\xi \in T_x\mathcal M$ for $\mathcal M=\mathbb R^n$ represented by an $n$-dimensional Vector{T}, where T <: AbstractFloat.
Functions
Base.exp — Method.exp(M,x,ξ[, t=1.0])compute the exponential map on the Euclidean manifold M, i.e. $x+t*\xi$, where the scaling parameter t is optional.
Base.log — Method.log(M,x,y)computes the logarithmic map on the Euclidean manifold M, i.e. $y-x$.
LinearAlgebra.dot — Method.dot(M,x,ξ,ν)Computes the Euclidean inner product of ξ and ν, i.e. $\langle\xi,\nu\rangle = \displaystyle\sum_{k=1}^n \xi_k\nu_k$.
Manopt.distance — Method.distance(M,x,y)compute the Euclidean distance $\lVert x - y\rVert$
Manopt.injectivityRadius — Method.injectivityRadius(M)return the injectivity radius of the Euclidean manifold M$=\mathbb R^n$.
Manopt.manifoldDimension — Method.manifoldDimension(M)return the manifold dimension of the Euclidean manifold M, i.e. the length of the vectors stored in M.dimension, i.e. $n$.
Manopt.manifoldDimension — Method.manifoldDimension(x)return the manifold dimension of the RnPoint x, i.e. $n$.
Manopt.parallelTransport — Method.parallelTransport(M,x,y,ξ)compute the parallel transport the Euclidean manifold M, which is the identity.
Manopt.project — Method.project(M,x,v)project a $n$-dimensional Vector{T} v on the tangent space of the RnPoint{T} x. Since the tangent space is identical to the $\mathbb R^n$, the mapping can be realized with the identity, i.e. $\operatorname{project}(M,x,v) = v$.
Manopt.randomMPoint — Function.Manopt.tangentONB — Method.(Ξ,κ) = tangentONB(M,x,y)compute an ONB within the tangent space $T_x\mathcal M$ at the MPoint on the Euclidean manifold M, such that $\xi=\log_xy$ is the first vector and compute the eigenvalues of the curvature tensor $R(\Xi,\dot g)\dot g$, where $g=g_{x,\xi}$ is the geodesic with $g(0)=x$, $\dot g(0) = \xi$, i.e. $\kappa_1$ corresponding to $\Xi_1=\xi$ is zero.
See also
Manopt.typicalDistance — Method.typicalDistance(M)returns the typical distance on the Euclidean manifold M: $\sqrt{n}$.
Manopt.validateMPoint — Method.Manopt.validateTVector — Method.Manopt.zeroTVector — Method.