The $n$-sphere $\mathbb S^n$ embedded in $\mathbb R^{n+1}$
The Sphere $\mathcal M = \mathbb S^n$ posesses the following instances of the abstract types Manifold
, MPoint
, and TVector
.
Manopt.SnPoint
— Type.SnPoint <: MPoint
A point $x$ on the manifold $\mathcal M = \mathbb S^n$ represented by a unit vector from $\mathbb R^{n+1}$
Manopt.SnTVector
— Type.SnTVector <: TVector
A tangent vector $\xi \in T_x\mathcal M$ on the manifold $\mathcal M = \mathbb S^n$. For the representation the tangent space can be given as $T_x\mathbb S^n = \bigl\{\xi \in \mathbb R^{n+1} \big| \langle x,\xi\rangle = 0\bigr\}$, where $\langle\cdot,\cdot\rangle$ denotes the Euclidean inner product on $\mathbb R^{n+1}$.
Manopt.Sphere
— Type.Sphere <: Manifold
The manifold $\mathcal M = \mathbb S^n$ of unit vectors in $\mathbb R^{n+1}$. This manifold is a matrix manifold (see IsMatrixM
) and embedded (see IsEmbeddedM
).
Abbreviation
Sn
Constructor
Sphere(n)
generate the sphere $\mathbb S^n$
Its abbreviation is
Sn`.
Functions
Base.exp
— Function.Base.log
— Method.log(M,x,y)
Compute the logarithmic map on the Sphere
$\mathcal M=\mathbb S^n$, i.e. the SnTVector
whose corresponding geodesic
starting from SnPoint
x
reaches the SnPoint
y
after time 1 on the Sphere
M
. The formula reads for $x\neq -y$
LinearAlgebra.dot
— Method.LinearAlgebra.norm
— Method.Manopt.distance
— Method.distance(M,x,y)
Compute the Riemannian distance on $\mathcal M=\mathbb S^n$ embedded in $\mathbb R^{n+1}$, which is given by
$ d_{\mathbb S^n}(x,y) = \operatorname{acos} \bigl(\langle x,y\rangle\bigr), $
where $\langle\cdot,\cdot\rangle$ denotes the Euclidean inner product on $\mathbb R^{n+1}$.
Manopt.injectivityRadius
— Method.injectivityRadius(M)
return the injectivity radius of the Sphere
manifold M
$=\mathbb S^n$.
Manopt.manifoldDimension
— Method.Manopt.manifoldDimension
— Method.manifoldDimension(M)
returns the dimension of the Sphere
M
.
Manopt.opposite
— Method.opposite(M,x)
returns the antipodal point of x, i.e. $ y = -x $.
Manopt.parallelTransport
— Method.parallelTransport(M,x,y,ξ)
Compute the paralllel transport of the SnTVector
ξ
from the tangent space $T_x\mathcal M$ at SnPoint
x
to $T_y\mathcal M$ at SnPoint
y
on the Sphere
M
provided that the corresponding geodesic
$g(\cdot;x,y)$ is unique. The formula reads
Manopt.project
— Method.project(M,x,v)
project a vector from the embedding onto the tangent space $T_x\mathbb S^n$ of a point $x$ in the Sphere
M
.
Manopt.randomMPoint
— Function.randomMPoint(M [,:Gaussian, σ=1.0])
return a random point on the Sphere by projecting a normal distirbuted vector from within the embedding to the sphere.
Manopt.randomTVector
— Function.Manopt.typicalDistance
— Method.typicalDistance(M)
returns the typical distance on the Sphere
Sn
: π.
Manopt.validateMPoint
— Method.Manopt.validateTVector
— Method.Manopt.zeroTVector
— Method.