The $n$-sphere $\mathbb S^n$ embedded in $\mathbb R^{n+1}$
The Sphere $\mathcal M = \mathbb S^n$ posesses the following instances of the abstract types Manifold, MPoint, and TVector.
Manopt.SnPoint — Type.SnPoint <: MPointA point $x$ on the manifold $\mathcal M = \mathbb S^n$ represented by a unit vector from $\mathbb R^{n+1}$
Manopt.SnTVector — Type.SnTVector <: TVectorA tangent vector $\xi \in T_x\mathcal M$ on the manifold $\mathcal M = \mathbb S^n$. For the representation the tangent space can be given as $T_x\mathbb S^n = \bigl\{\xi \in \mathbb R^{n+1} \big| \langle x,\xi\rangle = 0\bigr\}$, where $\langle\cdot,\cdot\rangle$ denotes the Euclidean inner product on $\mathbb R^{n+1}$.
Manopt.Sphere — Type.Sphere <: ManifoldThe manifold $\mathcal M = \mathbb S^n$ of unit vectors in $\mathbb R^{n+1}$. This manifold is a matrix manifold (see IsMatrixM) and embedded (see IsEmbeddedM).
Abbreviation
Sn
Constructor
Sphere(n)generate the sphere $\mathbb S^n$
Its abbreviation isSn`.
Functions
Base.exp — Function.Base.log — Method.log(M,x,y)Compute the logarithmic map on the Sphere $\mathcal M=\mathbb S^n$, i.e. the SnTVector whose corresponding geodesic starting from SnPoint x reaches the SnPointy after time 1 on the Sphere M. The formula reads for $x\neq -y$
LinearAlgebra.dot — Method.LinearAlgebra.norm — Method.Manopt.distance — Method.distance(M,x,y)Compute the Riemannian distance on $\mathcal M=\mathbb S^n$ embedded in $\mathbb R^{n+1}$, which is given by
$ d_{\mathbb S^n}(x,y) = \operatorname{acos} \bigl(\langle x,y\rangle\bigr), $
where $\langle\cdot,\cdot\rangle$ denotes the Euclidean inner product on $\mathbb R^{n+1}$.
Manopt.injectivityRadius — Method.injectivityRadius(M)return the injectivity radius of the Sphere manifold M$=\mathbb S^n$.
Manopt.manifoldDimension — Method.Manopt.manifoldDimension — Method.manifoldDimension(M)returns the dimension of the Sphere M.
Manopt.opposite — Method.opposite(M,x)returns the antipodal point of x, i.e. $ y = -x $.
Manopt.parallelTransport — Method.parallelTransport(M,x,y,ξ)Compute the paralllel transport of the SnTVector ξ from the tangent space $T_x\mathcal M$ at SnPoint x to $T_y\mathcal M$ at SnPointy on the Sphere M provided that the corresponding geodesic $g(\cdot;x,y)$ is unique. The formula reads
Manopt.project — Method.project(M,x,v)project a vector from the embedding onto the tangent space $T_x\mathbb S^n$ of a point $x$ in the Sphere M.
Manopt.randomMPoint — Function.randomMPoint(M [,:Gaussian, σ=1.0])return a random point on the Sphere by projecting a normal distirbuted vector from within the embedding to the sphere.
Manopt.randomTVector — Function.Manopt.typicalDistance — Method.typicalDistance(M)returns the typical distance on the SphereSn: π.
Manopt.validateMPoint — Method.Manopt.validateTVector — Method.Manopt.zeroTVector — Method.