The $n\times n$ symmetric matrices $\mathrm{Sym}(n)$ embedded in $\mathbb R^{n\times n}$
The manifold of symmetric matrices $\mathcal{Sym}(n)$ posesses the following instances of the abstract types Manifold, MPoint, and TVector.
Manopt.SymPoint — Type.SymPoint <: MPointA point $x$ on the manifold $\mathcal M = \mathrm{Sym}(n)$ of $n\times n$ symmetric matrices, represented in the redundant way of a symmetric matrix (instead of storing just the upper half).
Manopt.SymTVector — Type.SymTVector <: TVectorA tangent vector $\xi$ in $T_x\mathcal M$ of a symmetric matrix $x\in\mathcal M$.
Manopt.Symmetric — Type.Symmetric <: ManifoldThe manifold $\mathcal M = \mathrm{Sym}(n)$, where $\mathrm{Sym}(n) = \{ x \in \mathbb R^{n\times n} | x = x^\mathrm{T} \}$, $n\in\mathbb N$, denotes the manifold of symmetric matrices equipped with the trace inner product and its induced Forbenius norm.
Abbreviation
Sym or Sym(n), respectively.
Constructor
Symmetric(n)generates the manifold of n-by-n symmetric matrices.
Functions
Base.exp — Function.exp(M,x,ξ[, t=1.0])compute the exponential map on the Symmetric manifold M given a SymPoint x and a SymTVector ξ, as well as an optional scaling factor t. The exponential map is given by
Base.log — Method.LinearAlgebra.dot — Method.dot(M,x,ξ,ν)inner product of two SymTVectors ξ,ν lying in the tangent space of the SymPoint x on the Symmetric manifold M.
LinearAlgebra.norm — Method.norm(M,x,ξ)computes the norm of the SymTVector ξ in the tangent space of the SymPoint x on the Symmetric M embedded in the Euclidean space, i.e. by its Frobenius norm.
Manopt.distance — Method.Manopt.manifoldDimension — Method.manifoldDimension(x)returns the manifold dimension the SymPoint x belongs to.
Manopt.manifoldDimension — Method.manifoldDimension(M)returns the manifold dimension of the Symmetric manifold M.
Manopt.parallelTransport — Method.parallelTransport(M,x,y,ξ)compute the parallel transport of a SymTVector ξ from the tangent space at the SymPoint x to the SymPointy on the Symmetric manifold M. Since the metric is inherited from the embedding space, it is just the identity.
Manopt.typicalDistance — Method.typicalDistance(M)returns the typical distance on the Symmetric manifold M, i.e. $\sqrt{n}$.
Manopt.validateMPoint — Method.Manopt.validateTVector — Method.validateTVector(M,x,ξ)validate, that the SymTVector is a valid tangent vector to the SymPoint x on the Symmetric manifold M, i.e. that its dimensions are correct and that the matrix is symmetric.
Manopt.zeroTVector — Method.