The $n\times n$ symmetric matrices $\mathrm{Sym}(n)$ embedded in $\mathbb R^{n\times n}$
The manifold of symmetric matrices $\mathcal{Sym}(n)$ posesses the following instances of the abstract types Manifold
, MPoint
, and TVector
.
Manopt.SymPoint
— Type.SymPoint <: MPoint
A point $x$ on the manifold $\mathcal M = \mathrm{Sym}(n)$ of $n\times n$ symmetric matrices, represented in the redundant way of a symmetric matrix (instead of storing just the upper half).
Manopt.SymTVector
— Type.SymTVector <: TVector
A tangent vector $\xi$ in $T_x\mathcal M$ of a symmetric matrix $x\in\mathcal M$.
Manopt.Symmetric
— Type.Symmetric <: Manifold
The manifold $\mathcal M = \mathrm{Sym}(n)$, where $\mathrm{Sym}(n) = \{ x \in \mathbb R^{n\times n} | x = x^\mathrm{T} \}$, $n\in\mathbb N$, denotes the manifold of symmetric matrices equipped with the trace inner product and its induced Forbenius norm.
Abbreviation
Sym
or Sym(n)
, respectively.
Constructor
Symmetric(n)
generates the manifold of n
-by-n
symmetric matrices.
Functions
Base.exp
— Function.exp(M,x,ξ[, t=1.0])
compute the exponential map on the Symmetric
manifold M
given a SymPoint
x
and a SymTVector
ξ
, as well as an optional scaling factor t
. The exponential map is given by
Base.log
— Method.LinearAlgebra.dot
— Method.dot(M,x,ξ,ν)
inner product of two SymTVector
s ξ,ν
lying in the tangent space of the SymPoint
x
on the Symmetric
manifold M
.
LinearAlgebra.norm
— Method.norm(M,x,ξ)
computes the norm of the SymTVector
ξ
in the tangent space of the SymPoint
x
on the Symmetric
M
embedded in the Euclidean space, i.e. by its Frobenius norm.
Manopt.distance
— Method.Manopt.manifoldDimension
— Method.manifoldDimension(x)
returns the manifold dimension the SymPoint
x
belongs to.
Manopt.manifoldDimension
— Method.manifoldDimension(M)
returns the manifold dimension of the Symmetric
manifold M
.
Manopt.parallelTransport
— Method.parallelTransport(M,x,y,ξ)
compute the parallel transport of a SymTVector
ξ
from the tangent space at the SymPoint
x
to the SymPoint
y
on the Symmetric
manifold M
. Since the metric is inherited from the embedding space, it is just the identity.
Manopt.typicalDistance
— Method.typicalDistance(M)
returns the typical distance on the Symmetric
manifold M
, i.e. $\sqrt{n}$.
Manopt.validateMPoint
— Method.Manopt.validateTVector
— Method.validateTVector(M,x,ξ)
validate, that the SymTVector
is a valid tangent vector to the SymPoint
x
on the Symmetric
manifold M
, i.e. that its dimensions are correct and that the matrix is symmetric.
Manopt.zeroTVector
— Method.