Nelder Mead Method
Manopt.NelderMead — Function.NelderMead(M, F [, p])perform a nelder mead minimization problem for the cost funciton F on the manifold M. If the initial population p is not given, a random set of points is chosen.
This algorithm is adapted from the Euclidean Nelder-Mead method, see https://en.wikipedia.org/wiki/Nelder–Mead_method and http://www.optimization-online.org/DB_FILE/2007/08/1742.pdf.
Input
M– a manifold $\mathcal M$F– a cost function $F\colon\mathcal M\to\mathbb R$ to minimizepopulation– (n+1randomMPoint(M)) an initial population of $n+1$ points, where $n$ is the dimension of the manifoldM.
Optional
stoppingCriterion– (stopAfterIteration(2000)) aStoppingCriterionretraction– (exp) aretraction(M,x,ξ)to use.α– (1.) reflection parameter ($\alpha > 0$)γ– (2.) expansion parameter ($\gamma$)ρ– (1/2) contraction parameter, $0 < \rho \leq \frac{1}{2}$,σ– (1/2) shrink coefficient, $0 < \sigma \leq 1$
and the ones that are passed to decorateOptions for decorators.
Output
- either
xthe last iterate or the complete options depending on the optional keywordreturnOptions, which is false by default (hence then onlyxis returned).
Options
Manopt.NelderMeadOptions — Type.NelderMeadOptions <: OptionsDescribes all parameters and the state of a Nealer-Mead heuristic based optimization algorithm.
Fields
The naming of these parameters follows the Wikipedia article of the Euclidean case. The default is given in brackets, the required value range after the description
population– anArray{MPoint,1}of $n+1$ points $x_i$, $i=1,\ldots,n+1$, where $n$ is the dimension of the manifold.stoppingCriterion– (stopAfterIteration(2000)) aStoppingCriterionretraction– (exp) the rectraction to useα– (1.) reflection parameter ($\alpha > 0$)γ– (2.) expansion parameter ($\gamma>0$)ρ– (1/2) contraction parameter, $0 < \rho \leq \frac{1}{2}$,σ– (1/2) shrink coefficient, $0 < \sigma \leq 1$x– (p[1]) - a field to collect the current best value
Constructors
NelderMead(M,stop, retr; α=1. , γ=2., ρ=1/2, σ=1/2)construct a Nelder-Mead Option with a set of dimension(M)+1 random points.
NelderMead(p, stop retr; α=1. , γ=2., ρ=1/2, σ=1/2)construct a Nelder-Mead Option with a set p of MPoints