Data
For some manifolds there are artificial or real application data available that can be loaded using the following data functions
Manopt.artificialIn_SAR_image
— MethodartificialIn_SAR_image([pts=500])
generate an artificial InSAR image, i.e. phase valued data, of size pts
x pts
points.
This data set was introduced for the numerical examples in
Bergmann, R., Laus, F., Steidl, G., Weinmann, A.: Second Order Differences of Cyclic Data and Applications in Variational Denoising SIAM J. Imaging Sci., 7(4), 2916–2953, 2014. doi: 10.1137/140969993 arxiv: 1405.5349
Manopt.artificial_S1_signal
— Functionartificial_S1_signal([pts=500])
generate a real-valued signal having piecewise constant, linear and quadratic intervals with jumps in between. If the resulting manifold the data lives on, is the Circle the data is also wrapped to $[-\pi,\pi)$.
Optional
pts
– (500
) number of points to sample the function
Bergmann, R., Laus, F., Steidl, G., Weinmann, A.: Second Order Differences of Cyclic Data and Applications in Variational Denoising SIAM J. Imaging Sci., 7(4), 2916–2953, 2014. doi: 10.1137/140969993 arxiv: 1405.5349
Manopt.artificial_S1_signal
— Methodartificial_S1_signal(x)
evaluate the example signal $f(x), x ∈ [0,1]$, of phase-valued data introduces in Sec. 5.1 of
Bergmann, R., Laus, F., Steidl, G., Weinmann, A.: Second Order Differences of Cyclic Data and Applications in Variational Denoising SIAM J. Imaging Sci., 7(4), 2916–2953, 2014. doi: 10.1137/140969993 arxiv: 1405.5349
for values outside that intervall, this Signal is missing
.
Manopt.artificial_S1_slope_signal
— Functionartificial_S1_slope_signal([pts=500, slope=4.])
Creates a Signal of (phase-valued) data represented on the CircleManifold with increasing slope.
Optional
pts
– (500
) number of points to sample the function.slope
– (4.0
) initial slope that gets increased afterwards
This data set was introduced for the numerical examples in
Bergmann, R., Laus, F., Steidl, G., Weinmann, A.: Second Order Differences of Cyclic Data and Applications in Variational Denoising SIAM J. Imaging Sci., 7(4), 2916–2953, 2014. doi: 10.1137/140969993 arxiv: 1405.5349
Manopt.artificial_S2_composite_bezier_curve
— Methodartificial_S2_composite_bezier_curve()
Create the artificial curve in the Sphere(2)
consisting of 3 segments between the four points
\[p_0 = \begin{bmatrix}0&0&1\end{bmatrix}^{\mathrm{T}}, p_1 = \begin{bmatrix}0&-1&0\end{bmatrix}^{\mathrm{T}}, p_2 = \begin{bmatrix}-1&0&0\end{bmatrix}^{\mathrm{T}}, p_3 = \begin{bmatrix}0&0&-1\end{bmatrix}^{\mathrm{T}},\]
where each segment is a cubic Bezér curve, i.e. each point, except $p_3$ has a first point within the following segment $b_i^+$, $i=0,1,2$ and a last point within the previous segment, except for $p_0$, which are denoted by $b_i^-$, $i=1,2,3$. This curve is differentiable by the conditions $b_i^- = \gamma_{b_i^+,p_i}(2)$, $i=1,2$, where $\gamma_{a,b}$ is the shortest_geodesic
connecting $a$ and $b$. The remaining points are defined as
\[\begin{aligned} b_0^+ &= \exp_{p_0}\frac{\pi}{8\sqrt{2}}\begin{pmatrix}1&-1&0\end{pmatrix}^{\mathrm{T}},& b_1^+ &= \exp_{p_1}-\frac{\pi}{4\sqrt{2}}\begin{pmatrix}-1&0&1\end{pmatrix}^{\mathrm{T}},\\ b_2^+ &= \exp_{p_2}\frac{\pi}{4\sqrt{2}}\begin{pmatrix}0&1&-1\end{pmatrix}^{\mathrm{T}},& b_3^- &= \exp_{p_3}-\frac{\pi}{8\sqrt{2}}\begin{pmatrix}-1&1&0\end{pmatrix}^{\mathrm{T}}. \end{aligned}\]
This example was used within minimization of acceleration of the paper
Bergmann, R., Gousenbourger, P.-Y.: A variational model for data fitting on manifolds by minimizing the acceleration of a Bézier curve, Front. Appl. Math. Stat. 12, 2018. doi: 10.3389/fams.2018.00059 arxiv: 1807.10090
Manopt.artificial_S2_lemniscate
— Functionartificial_S2_lemniscate(p,t; a=π/2)
generate a point from the signal on the Sphere $\mathbb S^2$ by creating the Lemniscate of Bernoulli in the tangent space of p
sampled at t
and use èxp` to obtain a point on the Sphere.
Input
p
– the tangent space the Lemniscate is created int
– value to sample the Lemniscate at
Optional Values
a
– (π/2
) defines a half axis of the Lemniscate to cover a half sphere.
This dataset was used in the numerical example of Section 5.1 of
Bačák, M., Bergmann, R., Steidl, G., Weinmann, A.: A Second Order Non-Smooth Variational Model for Restoring Manifold-Valued Images SIAM J. Sci. Comput. 38(1), A567–A597, 2016. doi: 10.1137/15M101988X arxiv: 1506.02409
Manopt.artificial_S2_lemniscate
— Functionartificial_S2_lemniscate(p [,pts=128,a=π/2,interval=[0,2π])
generate a Signal on the Sphere $\mathbb S^2$ by creating the Lemniscate of Bernoulli in the tangent space of p
sampled at pts
points and use exp
to get a signal on the Sphere.
Input
p
– the tangent space the Lemniscate is created inpts
– (128
) number of points to sample the Lemniscatea
– (π/2
) defines a half axis of the Lemniscate to cover a half sphere.interval
– ([0,2*π]
) range to sample the lemniscate at, the default value refers to one closed curve
This dataset was used in the numerical example of Section 5.1 of
Bačák, M., Bergmann, R., Steidl, G., Weinmann, A.: A Second Order Non-Smooth Variational Model for Restoring Manifold-Valued Images SIAM J. Sci. Comput. 38(1), A567–A597, 2016. doi: 10.1137/15M101988X arxiv: 1506.02409
Manopt.artificial_S2_rotation_image
— Functionartificial_S2_rotation_image([pts=64, rotations=(.5,.5)])
creates an image with a rotation on each axis as a parametrization.
Optional Parameters
pts
– (64
) number of pixels along one dimensionrotations
– ((.5,.5)
) number of total rotations performed on the axes.
This dataset was used in the numerical example of Section 5.1 of
Bačák, M., Bergmann, R., Steidl, G., Weinmann, A.: A Second Order Non-Smooth Variational Model for Restoring Manifold-Valued Images SIAM J. Sci. Comput. 38(1), A567–A597, 2016. doi: 10.1137/15M101988X arxiv: 1506.02409
Manopt.artificial_S2_whirl_image
— Functionartificial_S2_whirl_image([pts=64])
generate an artificial image of data on the 2 sphere,
Arguments
pts
– (64
) size of the image inpts
$\times$pts
pixel.
This example dataset was used in the numerical example in Section 5.5 of
Laus, F., Nikolova, M., Persch, J., Steidl, G.: A Nonlocal Denoising Algorithm for Manifold-Valued Images Using Second Order Statistics, SIAM J. Imaging Sci., 10(1), 416–448, 2017. doi: 10.1137/16M1087114 arxiv: 1607.08481
It is based on artificial_S2_rotation_image
extended by small whirl patches.
Manopt.artificial_S2_whirl_patch
— Functionartificial_S2_whirl_patch([pts=5])
create a whirl within the pts
$\times$pts
patch of Sphere(@ref)(2)
-valued image data.
These patches are used within artificial_S2_whirl_image
.
Optional Parameters
pts
– (5
) size of the patch. If the number is odd, the center is the north pole.
Manopt.artificial_SPD_image
— Functionartificial_SPD_image([pts=64, stepsize=1.5])
create an artificial image of symmetric positive definite matrices of size pts
$\times$pts
pixel with a jump of size stepsize
.
This dataset was used in the numerical example of Section 5.2 of
Bačák, M., Bergmann, R., Steidl, G., Weinmann, A.: A Second Order Non-Smooth Variational Model for Restoring Manifold-Valued Images SIAM J. Sci. Comput. 38(1), A567–A597, 2016. doi: 10.1137/15M101988X arxiv: 1506.02409
Manopt.artificial_SPD_image2
— Functionartificial_SPD_image2([pts=64, fraction=.66])
create an artificial image of symmetric positive definite matrices of size pts
$\times$pts
pixel with right hand side fraction
is moved upwards.
This data set was introduced in the numerical examples of Section of
Bergmann, R., Persch, J., Steidl, G.: A Parallel Douglas Rachford Algorithm for Minimizing ROF-like Functionals on Images with Values in Symmetric Hadamard Manifolds SIAM J. Imaging. Sci. 9(3), pp. 901-937, 2016. doi: 10.1137/15M1052858 arxiv: 1512.02814