Augmented Lagrangian Method
Manopt.augmented_Lagrangian_method
— Functionaugmented_Lagrangian_method(M, F, gradF, x=random_point(M); kwargs...)
perform the augmented Lagrangian method (ALM)[LiuBoumal2020]. The aim of the ALM is to find the solution of the ConstrainedProblem
\[\begin{aligned} \min_{x ∈\mathcal{M}} &f(x)\\ \text{subject to } &g_i(x)\leq 0 \quad \text{ for } i= 1, …, m,\\ \quad &h_j(x)=0 \quad \text{ for } j=1,…,n, \end{aligned}\]
where M
is a Riemannian manifold, and $f$, $\{g_i\}_{i=1}^m$ and $\{h_j\}_{j=1}^p$ are twice continuously differentiable functions from M
to ℝ. For that, in every step $k$ of the algorithm, the AugmentedLagrangianCost
$\mathcal{L}_{ρ^{(k-1)}}(x, μ^{(k-1)}, λ^{(k-1)})$ is minimized on $\mathcal{M}$, where $μ^{(k-1)} \in \mathbb R^n$ and $λ^{(k-1)} \in \mathbb R^m$ are the current iterates of the Lagrange multipliers and $ρ^{(k-1)}$ is the current penalty parameter.
The Lagrange multipliers are then updated by
\[λ_j^{(k)} =\operatorname{clip}_{[λ_{\min},λ_{\max}]} (λ_j^{(k-1)} + ρ^{(k-1)} h_j(x^{(k)})) \text{for all} j=1,…,p,\]
and
\[μ_i^{(k)} =\operatorname{clip}_{[0,μ_{\max}]} (μ_i^{(k-1)} + ρ^{(k-1)} g_i(x^{(k)})) \text{ for all } i=1,…,m,\]
where $λ_{\min} \leq λ_{\max}$ and $μ_{\max}$ are the multiplier boundaries.
Next, we update the accuracy tolerance $ϵ$ by setting
\[ϵ^{(k)}=\max\{ϵ_{\min}, θ_ϵ ϵ^{(k-1)}\},\]
where $ϵ_{\min}$ is the lowest value $ϵ$ is allowed to become and $θ_ϵ ∈ (0,1)$ is constant scaling factor.
Last, we update the penalty parameter $ρ$. For this, we define
\[σ^{(k)}=\max_{j=1,…,p, i=1,…,m} \{\|h_j(x^{(k)})\|, \|\max_{i=1,…,m}\{g_i(x^{(k)}), -\frac{μ_i^{(k-1)}}{ρ^{(k-1)}} \}\| \}.\]
Then, we update ρ
according to
\[ρ^{(k)} = \begin{cases} ρ^{(k-1)}/θ_ρ, & \text{if } σ^{(k)}\leq θ_ρ σ^{(k-1)} ,\\ ρ^{(k-1)}, & \text{else,} \end{cases}\]
where $θ_ρ \in (0,1)$ is a constant scaling factor.
Input
M
– a manifold $\mathcal M$F
– a cost function $F:\mathcal M→ℝ$ to minimizegradF
– the gradient of the cost function
Optional
G
– the inequality constraintsH
– the equality constraintsgradG
– the gradient of the inequality constraintsgradH
– the gradient of the equality constraintsϵ
– (1e-3
) the accuracy toleranceϵ_min
– (1e-6
) the lower bound for the accuracy toleranceϵ_exponent
– (1/100
) exponent of the ϵ update factor; also 1/number of iterations until maximal accuracy is needed to end algorithm naturallyθ_ϵ
– ((ϵ_min / ϵ)^(ϵ_exponent)
) the scaling factor of the exactnessμ
– (ones(size(G(M,x),1))
) the Lagrange multiplier with respect to the inequality constraintsμ_max
– (20.0
) an upper bound for the Lagrange multiplier belonging to the inequality constraintsλ
– (ones(size(H(M,x),1))
) the Lagrange multiplier with respect to the equality constraintsλ_max
– (20.0
) an upper bound for the Lagrange multiplier belonging to the equality constraintsλ_min
– (- λ_max
) a lower bound for the Lagrange multiplier belonging to the equality constraintsτ
– (0.8
) factor for the improvement of the evaluation of the penalty parameterρ
– (1.0
) the penalty parameterθ_ρ
– (0.3
) the scaling factor of the penalty parametersub_cost
– (AugmentedLagrangianCost
(problem, ρ, μ, λ)
) use augmented Lagranian, expecially with the same numbersρ,μ
as in the options for the sub problemsub_grad
– (AugmentedLagrangianGrad
(problem, ρ, μ, λ)
) use augmented Lagranian gradient, expecially with the same numbersρ,μ
as in the options for the sub problemsub_kwargs
– keyword arguments to decorate the sub options, e.g. with debug.sub_stopping_criterion
– (StopAfterIteration
(200) |
StopWhenGradientNormLess
(ϵ) |
StopWhenStepsizeLess
(1e-8)
) specify a stopping criterion for the subsolver.sub_problem
– (GradientProblem
(M, subcost, subgrad; evaluation=evaluation)
) problem for the subsolversub_options
– (QuasiNewtonOptions
) usingQuasiNewtonLimitedMemoryDirectionUpdate
withInverseBFGS
andsub_stopping_criterion
as a stopping criterion. See alsosub_kwargs
.stopping_criterion
– (StopAfterIteration
(300)
| (StopWhenSmallerOrEqual
(ϵ, ϵ_min)
&StopWhenChangeLess
(1e-10))
) a functor inheriting fromStoppingCriterion
indicating when to stop.
Output
the obtained (approximate) minimizer $x^*$, see get_solver_return
for details
Manopt.augmented_Lagrangian_method!
— Functionaugmented_Lagrangian_method!(M, F, gradF x=random_point(M); kwargs...)
perform the augmented Lagrangian method (ALM) in-place of x
.
For all options, see augmented_Lagrangian_method
.
Options
Manopt.AugmentedLagrangianMethodOptions
— TypeAugmentedLagrangianMethodOptions{P,T} <: Options
Describes the augmented Lagrangian method, with
Fields
a default value is given in brackets if a parameter can be left out in initialization.
x
– a set point on a manifold as starting pointsub_problem
– problem for the subsolversub_options
– options of the subproblemϵ
– (1e–3
) the accuracy toleranceϵ_min
– (1e-6
) the lower bound for the accuracy toleranceλ
– (ones(len(
get_equality_constraints
(p,x))
) the Lagrange multiplier with respect to the equality constraintsλ_max
– (20.0
) an upper bound for the Lagrange multiplier belonging to the equality constraintsλ_min
– (- λ_max
) a lower bound for the Lagrange multiplier belonging to the equality constraintsμ
– (ones(len(
get_inequality_constraints
(p,x))
) the Lagrange multiplier with respect to the inequality constraintsμ_max
– (20.0
) an upper bound for the Lagrange multiplier belonging to the inequality constraintsρ
– (1.0
) the penalty parameterτ
– (0.8
) factor for the improvement of the evaluation of the penalty parameterθ_ρ
– (0.3
) the scaling factor of the penalty parameterθ_ϵ
– ((ϵ_min/ϵ)^(ϵ_exponent)
) the scaling factor of the accuracy tolerancepenalty
– evaluation of the current penalty term, initialized toInf
.stopping_criterion
– ((
StopAfterIteration
(300) | (
StopWhenSmallerOrEqual
(ϵ, ϵ_min) &
StopWhenChangeLess
(1e-10))
) a functor inheriting fromStoppingCriterion
indicating when to stop.
Constructor
AugmentedLagrangianMethodOptions(M::AbstractManifold, P::ConstrainedProblem, x; kwargs...)
construct an augmented Lagrangian method options with the fields and defaults as above, where the manifold M
and the ConstrainedProblem
P
are used for defaults in the keyword arguments.
See also
Helping Functions
Manopt.AugmentedLagrangianCost
— TypeAugmentedLagrangianCost{Pr,R,T}
Stores the parameters $ρ ∈ \mathbb R$, $μ ∈ \mathbb R^m$, $λ ∈ \mathbb R^n$ of the augmented Lagrangian associated to the ConstrainedProblem
P
.
This struct is also a functor (M,p) -> v
that can be used as a cost function within a solver, based on the internal ConstrainedProblem
we can compute
\[\mathcal L_\rho(p, μ, λ) = f(x) + \frac{ρ}{2} \biggl( \sum_{j=1}^n \Bigl( h_j(p) + \frac{λ_j}{ρ} \Bigr)^2 + \sum_{i=1}^m \max\Bigl\{ 0, \frac{μ_i}{ρ} + g_i(p) \Bigr\}^2 \Bigr)\]
Fields
P::Pr
,ρ::R
,μ::T
,λ::T
as mentioned above
Manopt.AugmentedLagrangianGrad
— TypeAugmentedLagrangianGrad{Pr,R,T}
Stores the parameters $ρ ∈ \mathbb R$, $μ ∈ \mathbb R^m$, $λ ∈ \mathbb R^n$ of the augmented Lagrangian associated to the ConstrainedProblem
P
.
This struct is also a functor in both formats
(M, p) -> X
to compute the gradient in allocating fashion.(M, X, p)
to compute the gradient in in-place fashion.
based on the internal ConstrainedProblem
and computes the gradient $\operatorname{grad} \mathcal L_{ρ}(p, μ, λ)$, see also AugmentedLagrangianCost
.
Literature
- LiuBoumal2020
C. Liu, N. Boumal, Simple Algorithms for Optimization on Riemannian Manifolds with Constraints, In: Applied Mathematics & Optimization, vol 82, 949–981 (2020), doi 10.1007/s00245-019-09564-3, arXiv: 1901.10000 Matlab source: https://github.com/losangle/Optimization-on-manifolds-with-extra-constraints