Conjugate Gradient Descent
Manopt.conjugate_gradient_descent
— Functionconjugate_gradient_descent(M, F, gradF, x)
perform a conjugate gradient based descent
\[x_{k+1} = \operatorname{retr}_{x_k} \bigl( s_kδ_k \bigr),\]
where $\operatorname{retr}$ denotes a retraction on the Manifold
M
and one can employ different rules to update the descent direction $δ_k$ based on the last direction $δ_{k-1}$ and both gradients $\operatorname{grad}f(x_k)$,$\operatorname{grad}f(x_{k-1})$. The Stepsize
$s_k$ may be determined by a Linesearch
.
Available update rules are SteepestDirectionUpdateRule
, which yields a gradient_descent
, ConjugateDescentCoefficient
(the default), DaiYuanCoefficient
, FletcherReevesCoefficient
, HagerZhangCoefficient
, HeestenesStiefelCoefficient
, LiuStoreyCoefficient
, and PolakRibiereCoefficient
.
They all compute $β_k$ such that this algorithm updates the search direction as
\[\delta_k=\operatorname{grad}f(x_k) + β_k \delta_{k-1}\]
Input
M
: a manifold $\mathcal M$F
: a cost function $F:\mathcal M→ℝ$ to minimize implemented as a function(M,p) -> v
gradF
: the gradient $\operatorname{grad}F:\mathcal M → T\mathcal M$ of $F$ implemented also as(M,x) -> X
x
: an initial value $x∈\mathcal M$
Optional
coefficient
: (ConjugateDescentCoefficient
<:
DirectionUpdateRule
) rule to compute the descent direction update coefficient $β_k$, as a functor, i.e. the resulting function maps(p,o,i) -> β
, wherep
is the currentGradientProblem
,o
are theConjugateGradientDescentOptions
o
andi
is the current iterate.evaluation
– (AllocatingEvaluation
) specify whether the gradient works by allocation (default) formgradF(M, x)
orMutatingEvaluation
in place, i.e. is of the formgradF!(M, X, x)
.retraction_method
- (default_retraction_method(M
) a retraction method to use.stepsize
- (Constant(1.)
) AStepsize
function applied to the search direction. The default is a constant step size 1.stopping_criterion
: (stopWhenAny( stopAtIteration(200), stopGradientNormLess(10.0^-8))
) a function indicating when to stop.vector_transport_method
– (default_vector_transport_method(M)
) vector transport method to transport the old descent direction when computing the new descent direction.
Output
the obtained (approximate) minimizer $x^*$, see get_solver_return
for details
Manopt.conjugate_gradient_descent!
— Functionconjugate_gradient_descent!(M, F, gradF, x)
perform a conjugate gradient based descent in place of x
, i.e.
\[x_{k+1} = \operatorname{retr}_{x_k} \bigl( s_k\delta_k \bigr),\]
where $\operatorname{retr}$ denotes a retraction on the Manifold
M
Input
M
: a manifold $\mathcal M$F
: a cost function $F:\mathcal M→ℝ$ to minimizegradF
: the gradient $\operatorname{grad}F:\mathcal M→ T\mathcal M$ of Fx
: an initial value $x∈\mathcal M$
for more details and options, especially the DirectionUpdateRule
s, see conjugate_gradient_descent
.
Options
Manopt.ConjugateGradientDescentOptions
— TypeConjugateGradientOptions <: AbstractGradientOptions
specify options for a conjugate gradient descent algorithm, that solves a [GradientProblem
].
Fields
x
– the current iterate, a point on a manifoldgradient
– the current gradient, also denoted as $ξ$ or $ξ_k$ for the gradient in the $k$th step.δ
– the current descent direction, i.e. also tangent vectorβ
– the current update coefficient rule, see .coefficient
– aDirectionUpdateRule
function to determine the newβ
stepsize
– aStepsize
functionstop
– aStoppingCriterion
retraction_method
– (default_retraction_method(M)
) a type of retraction
See also
conjugate_gradient_descent
, GradientProblem
, ArmijoLinesearch
Available Coefficients
The update rules act as DirectionUpdateRule
, which internally always first evaluate the gradient itself.
Manopt.ConjugateDescentCoefficient
— TypeConjugateDescentCoefficient <: DirectionUpdateRule
Computes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptions
o
include the last iterates $x_k,ξ_k$, the current iterates $x_{k+1},ξ_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [Flethcer1987] adapted to manifolds:
\[β_k = \frac{ \lVert ξ_{k+1} \rVert_{x_{k+1}}^2 } {\langle -\delta_k,ξ_k \rangle_{x_k}}.\]
See also conjugate_gradient_descent
Constructor
ConjugateDescentCoefficient(a::StoreOptionsAction=())
Construct the conjugate descent coefficient update rule, a new storage is created by default.
Manopt.DaiYuanCoefficient
— TypeDaiYuanCoefficient <: DirectionUpdateRule
Computes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptions
o
include the last iterates $x_k,ξ_k$, the current iterates $x_{k+1},ξ_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [DaiYuan1999] adapted to manifolds:
Let $\nu_k = ξ_{k+1} - P_{x_{k+1}\gets x_k}ξ_k$, where $P_{a\gets b}(⋅)$ denotes a vector transport from the tangent space at $a$ to $b$.
Then the coefficient reads
\[β_k = \frac{ \lVert ξ_{k+1} \rVert_{x_{k+1}}^2 } {\langle P_{x_{k+1}\gets x_k}\delta_k, \nu_k \rangle_{x_{k+1}}}.\]
See also conjugate_gradient_descent
Constructor
DaiYuanCoefficient(
t::AbstractVectorTransportMethod=ParallelTransport(),
a::StoreOptionsAction=(),
)
Construct the Dai Yuan coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
Manopt.FletcherReevesCoefficient
— TypeFletcherReevesCoefficient <: DirectionUpdateRule
Computes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptions
o
include the last iterates $x_k,ξ_k$, the current iterates $x_{k+1},ξ_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [FletcherReeves1964] adapted to manifolds:
\[β_k = \frac{\lVert ξ_{k+1}\rVert_{x_{k+1}}^2}{\lVert ξ_{k}\rVert_{x_{k}}^2}.\]
See also conjugate_gradient_descent
Constructor
FletcherReevesCoefficient(a::StoreOptionsAction=())
Construct the Fletcher Reeves coefficient update rule, a new storage is created by default.
Manopt.HagerZhangCoefficient
— TypeHagerZhangCoefficient <: DirectionUpdateRule
Computes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptions
o
include the last iterates $x_k,ξ_k$, the current iterates $x_{k+1},ξ_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [HagerZhang2005] adapted to manifolds: let $\nu_k = ξ_{k+1} - P_{x_{k+1}\gets x_k}ξ_k$, where $P_{a\gets b}(⋅)$ denotes a vector transport from the tangent space at $a$ to $b$.
\[β_k = \Bigl\langle\nu_k - \frac{ 2\lVert \nu_k\rVert_{x_{k+1}}^2 }{ \langle P_{x_{k+1}\gets x_k}\delta_k, \nu_k \rangle_{x_{k+1}} } P_{x_{k+1}\gets x_k}\delta_k, \frac{ξ_{k+1}}{ \langle P_{x_{k+1}\gets x_k}\delta_k, \nu_k \rangle_{x_{k+1}} } \Bigr\rangle_{x_{k+1}}.\]
This method includes a numerical stability proposed by those authors.
See also conjugate_gradient_descent
Constructor
HagerZhangCoefficient(
t::AbstractVectorTransportMethod=ParallelTransport(),
a::StoreOptionsAction=(),
)
Construct the Hager Zhang coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
Manopt.HeestenesStiefelCoefficient
— TypeHeestenesStiefelCoefficient <: DirectionUpdateRule
Computes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptions
o
include the last iterates $x_k,ξ_k$, the current iterates $x_{k+1},ξ_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [HeestensStiefel1952] adapted to manifolds as follows:
Let $\nu_k = ξ_{k+1} - P_{x_{k+1}\gets x_k}ξ_k$. Then the update reads
\[β_k = \frac{\langle ξ_{k+1}, \nu_k \rangle_{x_{k+1}} } { \langle P_{x_{k+1}\gets x_k} \delta_k, \nu_k\rangle_{x_{k+1}} },\]
where $P_{a\gets b}(⋅)$ denotes a vector transport from the tangent space at $a$ to $b$.
Constructor
HeestenesStiefelCoefficient(
t::AbstractVectorTransportMethod=ParallelTransport(),
a::StoreOptionsAction=()
)
Construct the Heestens Stiefel coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
See also conjugate_gradient_descent
Manopt.LiuStoreyCoefficient
— TypeLiuStoreyCoefficient <: DirectionUpdateRule
Computes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptions
o
include the last iterates $x_k,ξ_k$, the current iterates $x_{k+1},ξ_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [LuiStorey1991] adapted to manifolds:
Let $\nu_k = ξ_{k+1} - P_{x_{k+1}\gets x_k}ξ_k$, where $P_{a\gets b}(⋅)$ denotes a vector transport from the tangent space at $a$ to $b$.
Then the coefficient reads
\[β_k = - \frac{ \langle ξ_{k+1},\nu_k \rangle_{x_{k+1}} } {\langle \delta_k,ξ_k \rangle_{x_k}}.\]
See also conjugate_gradient_descent
Constructor
LiuStoreyCoefficient(
t::AbstractVectorTransportMethod=ParallelTransport(),
a::StoreOptionsAction=()
)
Construct the Lui Storey coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
Manopt.PolakRibiereCoefficient
— TypePolakRibiereCoefficient <: DirectionUpdateRule
Computes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptions
o
include the last iterates $x_k,ξ_k$, the current iterates $x_{k+1},ξ_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [PolakRibiere1969][Polyak1969] adapted to manifolds:
Let $\nu_k = ξ_{k+1} - P_{x_{k+1}\gets x_k}ξ_k$, where $P_{a\gets b}(⋅)$ denotes a vector transport from the tangent space at $a$ to $b$.
Then the update reads
\[β_k = \frac{ \langle ξ_{k+1}, \nu_k \rangle_{x_{k+1}} } {\lVert ξ_k \rVert_{x_k}^2 }.\]
Constructor
PolakRibiereCoefficient(
t::AbstractVectorTransportMethod=ParallelTransport(),
a::StoreOptionsAction=()
)
Construct the PolakRibiere coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
See also conjugate_gradient_descent
Manopt.SteepestDirectionUpdateRule
— TypeSteepestDirectionUpdateRule <: DirectionUpdateRule
The simplest rule to update is to have no influence of the last direction and hence return an update $β = 0$ for all ConjugateGradientDescentOptions
o
See also conjugate_gradient_descent
Literature
- Flethcer1987
R. Fletcher, Practical Methods of Optimization vol. 1: Unconstrained Optimization John Wiley & Sons, New York, 1987. doi 10.1137/1024028
- DaiYuan1999
[Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), pp. 177–182. doi: 10.1137/S1052623497318992
- FletcherReeves1964
R. Fletcher and C. Reeves, Function minimization by conjugate gradients, Comput. J., 7 (1964), pp. 149–154. doi: 10.1093/comjnl/7.2.149
- HagerZhang2005
[W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim, (16), pp. 170-192, 2005. doi: 10.1137/030601880
- HeestensStiefel1952
M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436. doi: 10.6028/jres.049.044
- LuiStorey1991
[Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms, Part 1: Theory J. Optim. Theory Appl., 69 (1991), pp. 129–137. doi: 10.1007/BF00940464
- PolakRibiere1969
E. Polak, G. Ribiere, Note sur la convergence de méthodes de directions conjuguées ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 3 (1969) no. R1, p. 35-43, url: http://www.numdam.org/item/?id=M2AN1969__31350
- Polyak1969
B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comp. Math. Math. Phys., 9 (1969), pp. 94–112. doi: 10.1016/0041-5553(69)90035-4