Conjugate gradient descent
Manopt.conjugate_gradient_descent — Functionconjugate_gradient_descent(M, F, gradF, p=rand(M))
conjugate_gradient_descent(M, gradient_objective, p)perform a conjugate gradient based descent
\[p_{k+1} = \operatorname{retr}_{p_k} \bigl( s_kδ_k \bigr),\]
where $\operatorname{retr}$ denotes a retraction on the Manifold M and one can employ different rules to update the descent direction $δ_k$ based on the last direction $δ_{k-1}$ and both gradients $\operatorname{grad}f(x_k)$,$\operatorname{grad}f(x_{k-1})$. The Stepsize $s_k$ may be determined by a Linesearch.
Alternatively to f and grad_f you can provide the AbstractManifoldGradientObjective gradient_objective directly.
Available update rules are SteepestDirectionUpdateRule, which yields a gradient_descent, ConjugateDescentCoefficient (the default), DaiYuanCoefficient, FletcherReevesCoefficient, HagerZhangCoefficient, HestenesStiefelCoefficient, LiuStoreyCoefficient, and PolakRibiereCoefficient. These can all be combined with a ConjugateGradientBealeRestart rule.
They all compute $β_k$ such that this algorithm updates the search direction as
\[\delta_k=\operatorname{grad}f(p_k) + β_k \delta_{k-1}\]
Input
Ma manifold $\mathcal M$fa cost function $F:\mathcal M→ℝ$ to minimize implemented as a function(M,p) -> vgrad_fthe gradient $\operatorname{grad}F:\mathcal M → T\mathcal M$ of $F$ implemented also as(M,x) -> Xpan initial value $x∈\mathcal M$
Optional
coefficient: (ConjugateDescentCoefficient<:DirectionUpdateRule) rule to compute the descent direction update coefficient $β_k$, as a functor, where the resulting function maps are(amp, cgs, i) -> βwithampanAbstractManoptProblem,cgsis theConjugateGradientDescentState, andiis the current iterate.evaluation: (AllocatingEvaluation) specify whether the gradient works by allocation (default) formgradF(M, x)orInplaceEvaluationin place of the formgradF!(M, X, x).retraction_method: (default_retraction_method(M, typeof(p))) a retraction method to use.stepsize: (ArmijoLinesearchviadefault_stepsize) AStepsizefunction applied to the search direction. The default is a constant step size 1.stopping_criterion: (stopWhenAny( stopAtIteration(200), stopGradientNormLess(10.0^-8))) a function indicating when to stop.vector_transport_method: (default_vector_transport_method(M, typeof(p))) vector transport method to transport the old descent direction when computing the new descent direction.
If you provide the ManifoldGradientObjective directly, evaluation is ignored.
Output
the obtained (approximate) minimizer $p^*$, see get_solver_return for details
Manopt.conjugate_gradient_descent! — Functionconjugate_gradient_descent!(M, F, gradF, x)
conjugate_gradient_descent!(M, gradient_objective, p; kwargs...)perform a conjugate gradient based descent in place of x as
\[p_{k+1} = \operatorname{retr}_{p_k} \bigl( s_k\delta_k \bigr),\]
where $\operatorname{retr}$ denotes a retraction on the Manifold M
Input
M: a manifold $\mathcal M$f: a cost function $F:\mathcal M→ℝ$ to minimizegrad_f: the gradient $\operatorname{grad}F:\mathcal M→ T\mathcal M$ of Fp: an initial value $p∈\mathcal M$
Alternatively to f and grad_f you can provide the AbstractManifoldGradientObjective gradient_objective directly.
for more details and options, especially the DirectionUpdateRules, see conjugate_gradient_descent.
State
Manopt.ConjugateGradientDescentState — TypeConjugateGradientState <: AbstractGradientSolverStatespecify options for a conjugate gradient descent algorithm, that solves a [DefaultManoptProblem].
Fields
p: the current iterate, a point on a manifoldX: the current gradient, also denoted as $ξ$ or $X_k$ for the gradient in the $k$th step.δ: the current descent direction, also a tangent vectorβ: the current update coefficient rule, see .coefficient: (ConjugateDescentCoefficient()) aDirectionUpdateRulefunction to determine the newβstepsize: (default_stepsize(M, ConjugateGradientDescentState; retraction_method=retraction_method)) aStepsizefunctionstop: (StopAfterIteration(500) |StopWhenGradientNormLess(1e-8)) aStoppingCriterionretraction_method: (default_retraction_method(M, typeof(p))) a type of retractionvector_transport_method: (default_retraction_method(M, typeof(p))) a type of retraction
Constructor
ConjugateGradientState(M, p)where the last five fields can be set by their names as keyword and the X can be set to a tangent vector type using the keyword initial_gradient which defaults to zero_vector(M,p), and δ is initialized to a copy of this vector.
See also
conjugate_gradient_descent, DefaultManoptProblem, ArmijoLinesearch
Available coefficients
The update rules act as DirectionUpdateRule, which internally always first evaluate the gradient itself.
Manopt.ConjugateGradientBealeRestart — TypeConjugateGradientBealeRestart <: DirectionUpdateRuleAn update rule might require a restart, that is using pure gradient as descent direction, if the last two gradients are nearly orthogonal, see [HZ06, page 12] (in the preprint, page 46 in Journal page numbers). This method is named after E. Beale from his proceedings paper in 1972 [Bea72]. This method acts as a decorator to any existing DirectionUpdateRule direction_update.
When obtain from the ConjugateGradientDescentStatecgs the last $p_k,X_k$ and the current $p_{k+1},X_{k+1}$ iterate and the gradient, respectively.
Then a restart is performed, hence $β_k = 0$ returned if
\[ \frac{ ⟨X_{k+1}, P_{p_{k+1}\gets p_k}X_k⟩}{\lVert X_k \rVert_{p_k}} > ξ,\]
where $P_{a\gets b}(⋅)$ denotes a vector transport from the tangent space at $a$ to $b$, and $ξ$ is the threshold. The default threshold is chosen as 0.2 as recommended in [Pow77]
Constructor
ConjugateGradientBealeRestart(
direction_update::D,
threshold=0.2;
manifold::AbstractManifold = DefaultManifold(),
vector_transport_method::V=default_vector_transport_method(manifold),
)Manopt.ConjugateDescentCoefficient — TypeConjugateDescentCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentStatecgds include the last iterates $p_k,X_k$, the current iterates $p_{k+1},X_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [Fle87] adapted to manifolds:
\[β_k = \frac{ \lVert X_{k+1} \rVert_{p_{k+1}}^2 } {\langle -\delta_k,X_k \rangle_{p_k}}.\]
See also conjugate_gradient_descent
Constructor
ConjugateDescentCoefficient(a::StoreStateAction=())Construct the conjugate descent coefficient update rule, a new storage is created by default.
Manopt.DaiYuanCoefficient — TypeDaiYuanCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentStatecgds include the last iterates $p_k,X_k$, the current iterates $p_{k+1},X_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [DY99] adapted to manifolds:
Let $\nu_k = X_{k+1} - P_{p_{k+1}\gets p_k}X_k$, where $P_{a\gets b}(⋅)$ denotes a vector transport from the tangent space at $a$ to $b$.
Then the coefficient reads
\[β_k = \frac{ \lVert X_{k+1} \rVert_{p_{k+1}}^2 } {\langle P_{p_{k+1}\gets p_k}\delta_k, \nu_k \rangle_{p_{k+1}}}.\]
See also conjugate_gradient_descent
Constructor
function DaiYuanCoefficient(
M::AbstractManifold=DefaultManifold(2);
t::AbstractVectorTransportMethod=default_vector_transport_method(M)
)Construct the Dai—Yuan coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
Manopt.FletcherReevesCoefficient — TypeFletcherReevesCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentStatecgds include the last iterates $p_k,X_k$, the current iterates $p_{k+1},X_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [FR64] adapted to manifolds:
\[β_k = \frac{\lVert X_{k+1}\rVert_{p_{k+1}}^2}{\lVert X_k\rVert_{x_{k}}^2}.\]
See also conjugate_gradient_descent
Constructor
FletcherReevesCoefficient(a::StoreStateAction=())Construct the Fletcher—Reeves coefficient update rule, a new storage is created by default.
Manopt.HagerZhangCoefficient — TypeHagerZhangCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentStatecgds include the last iterates $p_k,X_k$, the current iterates $p_{k+1},X_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [HZ05]. adapted to manifolds: let $\nu_k = X_{k+1} - P_{p_{k+1}\gets p_k}X_k$, where $P_{a\gets b}(⋅)$ denotes a vector transport from the tangent space at $a$ to $b$.
\[β_k = \Bigl\langle\nu_k - \frac{ 2\lVert \nu_k\rVert_{p_{k+1}}^2 }{ \langle P_{p_{k+1}\gets p_k}\delta_k, \nu_k \rangle_{p_{k+1}} } P_{p_{k+1}\gets p_k}\delta_k, \frac{X_{k+1}}{ \langle P_{p_{k+1}\gets p_k}\delta_k, \nu_k \rangle_{p_{k+1}} } \Bigr\rangle_{p_{k+1}}.\]
This method includes a numerical stability proposed by those authors.
See also conjugate_gradient_descent
Constructor
function HagerZhangCoefficient(t::AbstractVectorTransportMethod)
function HagerZhangCoefficient(M::AbstractManifold = DefaultManifold(2))Construct the Hager Zhang coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
Manopt.HestenesStiefelCoefficient — TypeHestenesStiefelCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentStatecgds include the last iterates $p_k,X_k$, the current iterates $p_{k+1},X_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [HS52] adapted to manifolds as follows:
Let $\nu_k = X_{k+1} - P_{p_{k+1}\gets p_k}X_k$. Then the update reads
\[β_k = \frac{\langle X_{k+1}, \nu_k \rangle_{p_{k+1}} } { \langle P_{p_{k+1}\gets p_k} \delta_k, \nu_k\rangle_{p_{k+1}} },\]
where $P_{a\gets b}(⋅)$ denotes a vector transport from the tangent space at $a$ to $b$.
Constructor
function HestenesStiefelCoefficient(transport_method::AbstractVectorTransportMethod)
function HestenesStiefelCoefficient(M::AbstractManifold = DefaultManifold(2))Construct the Heestens Stiefel coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
See also conjugate_gradient_descent
Manopt.LiuStoreyCoefficient — TypeLiuStoreyCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentStatecgds include the last iterates $p_k,X_k$, the current iterates $p_{k+1},X_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [LS91] adapted to manifolds:
Let $\nu_k = X_{k+1} - P_{p_{k+1}\gets p_k}X_k$, where $P_{a\gets b}(⋅)$ denotes a vector transport from the tangent space at $a$ to $b$.
Then the coefficient reads
\[β_k = - \frac{ \langle X_{k+1},\nu_k \rangle_{p_{k+1}} } {\langle \delta_k,X_k \rangle_{p_k}}.\]
See also conjugate_gradient_descent
Constructor
function LiuStoreyCoefficient(t::AbstractVectorTransportMethod)
function LiuStoreyCoefficient(M::AbstractManifold = DefaultManifold(2))Construct the Lui Storey coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
Manopt.PolakRibiereCoefficient — TypePolakRibiereCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentStatecgds include the last iterates $p_k,X_k$, the current iterates $p_{k+1},X_{k+1}$ of the iterate and the gradient, respectively, and the last update direction $\delta=\delta_k$, based on [PR69] and [Pol69] adapted to manifolds:
Let $\nu_k = X_{k+1} - P_{p_{k+1}\gets p_k}X_k$, where $P_{a\gets b}(⋅)$ denotes a vector transport from the tangent space at $a$ to $b$.
Then the update reads
\[β_k = \frac{ \langle X_{k+1}, \nu_k \rangle_{p_{k+1}} } {\lVert X_k \rVert_{p_k}^2 }.\]
Constructor
function PolakRibiereCoefficient(
M::AbstractManifold=DefaultManifold(2);
t::AbstractVectorTransportMethod=default_vector_transport_method(M)
)Construct the PolakRibiere coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
See also conjugate_gradient_descent
Manopt.SteepestDirectionUpdateRule — TypeSteepestDirectionUpdateRule <: DirectionUpdateRuleThe simplest rule to update is to have no influence of the last direction and hence return an update $β = 0$ for all ConjugateGradientDescentStatecgds
See also conjugate_gradient_descent
Technical details
The conjugate_gradient_descent solver requires the following functions of a manifold to be available
- A
retract!(M, q, p, X); it is recommended to set thedefault_retraction_methodto a favourite retraction. If this default is set, aretraction_method=does not have to be specified. - A
vector_transport_to!M, Y, p, X, q); it is recommended to set thedefault_vector_transport_methodto a favourite retraction. If this default is set, avector_transport_method=orvector_transport_method_dual=(for $\mathcal N$) does not have to be specified. - By default gradient descent uses
ArmijoLinesearchwhich requiresmax_stepsize(M)to be set and an implementation ofinner(M, p, X). - By default the stopping criterion uses the
normas well, to stop when the norm of the gradient is small, but if you implementedinner, the norm is provided already. - By default the tangent vector storing the gradient is initialized calling
zero_vector(M,p).
Literature
- [Bea72]
- E. M. Beale. A derivation of conjugate gradients. In: Numerical methods for nonlinear optimization, edited by F. A. Lootsma (Academic Press, London, London, 1972); pp. 39–43.
- [DY99]
- Y. H. Dai and Y. Yuan. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property. SIAM Journal on Optimization 10, 177–182 (1999).
- [Fle87]
- R. Fletcher. Practical Methods of Optimization. 2 Edition, A Wiley-Interscience Publication (John Wiley & Sons Ltd., 1987).
- [FR64]
- R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The Computer Journal 7, 149–154 (1964).
- [HZ06]
- W. W. Hager and H. Zhang. A survey of nonlinear conjugate gradient methods. Pacific Journal of Optimization 2, 35–58 (2006).
- [HZ05]
- W. W. Hager and H. Zhang. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search. SIAM Journal on Optimization 16, 170–192 (2005).
- [HS52]
- M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards 49, 409 (1952).
- [LS91]
- Y. Liu and C. Storey. Efficient generalized conjugate gradient algorithms, part 1: Theory. Journal of Optimization Theory and Applications 69, 129–137 (1991).
- [PR69]
- E. Polak and G. Ribière. Note sur la convergence de méthodes de directions conjuguées. Revue française d’informatique et de recherche opérationnelle 3, 35–43 (1969).
- [Pol69]
- B. T. Polyak. The conjugate gradient method in extremal problems. USSR Computational Mathematics and Mathematical Physics 9, 94–112 (1969).
- [Pow77]
- M. J. Powell. Restart procedures for the conjugate gradient method. Mathematical Programming 12, 241–254 (1977).