Manopt.jl logo
Manopt.jl
  • Home
  • About
  • How to...
    • get Started: Optimize!
    • do stochastic gradient descent
    • work with Bézier curves
    • see the gradient of $d_2$
    • use Jacobi Fields
  • Plans
  • Solvers
    • Introduction
    • Chambolle-Pock
    • Conjugate gradient descent
    • Cyclic Proximal Point
    • Douglas–Rachford
    • Gradient Descent
    • Nelder–Mead
    • Particle Swarm Optimization
    • Quasi-Newton
    • Stochastic Gradient Descent
    • Subgradient method
    • Steihaug-Toint TCG Method
    • Trust-Regions Solver
  • Functions
    • Introduction
    • Bézier curves
    • Cost functions
    • Differentials
    • Adjoint Differentials
    • Gradients
    • Jacobi Fields
    • Proximal Maps
    • Specific Manifold Functions
  • Helpers
    • Data
    • Error Measures
    • Exports
  • Function Index
Version
  • Helpers
  • Error Measures
  • Error Measures
Edit on GitHub

Error Measures

Manopt.meanSquaredError — Function
meanSquaredError(M, p, q)

Compute the (mean) squared error between the two points p and q on the (power) manifold M.

source
Manopt.meanAverageError — Function
meanSquaredError(M,x,y)

Computes the (mean) squared error between the two points x and y on the PowerManifold manifold M.

source
« DataExports »

Settings


This document was generated with Documenter.jl on Sunday 7 February 2021. Using Julia version 1.4.2.