Conjugate Gradient Descent
Manopt.conjugate_gradient_descent — Functionconjugate_gradient_descent(M, F, ∇F, x)perform a conjugate gradient based descent
where $\operatorname{retr}$ denotes a retraction on the Manifold M and one can employ different rules to update the descent direction $\delta_k$ based on the last direction $\delta_{k-1}$ and both gradients $\nabla f(x_k)$,$\nabla f(x_{k-1})$. The Stepsize $s_k$ may be determined by a Linesearch.
Available update rules are SteepestDirectionUpdateRule, which yields a gradient_descent, ConjugateDescentCoefficient, DaiYuanCoefficient, FletcherReevesCoefficient, HagerZhangCoefficient, HeestenesStiefelCoefficient, LiuStoreyCoefficient, and PolakRibiereCoefficient.
They all compute $\beta_k$ such that this algorithm updates the search direction as
Input
M: a manifold $\mathcal M$F: a cost function $F\colon\mathcal M\to\mathbb R$ to minimize∇F: the gradient $∇ F\colon\mathcal M\to T\mathcal M$ of Fx: an initial value $x\in\mathcal M$
Optional
coefficient: (SteepestDirectionUpdateRule<:DirectionUpdateRulerule to compute the descent direction update coefficient $\beta_k$, as a functor, i.e. the resulting function maps(p,o,i) -> β, wherepis the currentGradientProblem,oare theConjugateGradientDescentOptionsoandiis the current iterate.retraction_method- (ExponentialRetraction) a retraction method to use, by default the exponntial mapreturn_options– (false) – if actiavated, the extended result, i.e. the completeOptionsre returned. This can be used to access recorded values. If set to false (default) just the optimal valuex_optif returnedstepsize- (Constant(1.)) AStepsizefunction applied to the search direction. The default is a constant step size 1.stopping_criterion: (stopWhenAny( stopAtIteration(200), stopGradientNormLess(10.0^-8))) a function indicating when to stop.vector_transport_method– (ParallelTransport()) vector transport method to transport the old descent direction when computing the new descent direction.
Output
x_opt– the resulting (approximately critical) point of gradientDescent
OR
options- the options returned by the solver (seereturn_options)
Manopt.conjugate_gradient_descent! — Functionconjugate_gradient_descent!(M, F, ∇F, x)perform a conjugate gradient based descent in place of x, i.e.
where $\operatorname{retr}$ denotes a retraction on the Manifold M
Input
M: a manifold $\mathcal M$F: a cost function $F\colon\mathcal M\to\mathbb R$ to minimize∇F: the gradient $∇ F\colon\mathcal M\to T\mathcal M$ of Fx: an initial value $x\in\mathcal M$
for more details and options, especially the DirectionUpdateRules, see conjugate_gradient_descent.
Options
Manopt.ConjugateGradientDescentOptions — TypeConjugateGradientOptions <: Optionsspecify options for a conjugate gradient descent algoritm, that solves a [GradientProblem].
Fields
x– the current iterate, a point on a manifold∇– the current gradientδ– the current descent direction, i.e. also tangent vectorβ– the current update coefficient rule, see .coefficient– aDirectionUpdateRulefunction to determine the newβstepsize– aStepsizefunctionstop– aStoppingCriterionretraction_method– (ExponentialRetraction()) a type of retraction
See also
conjugate_gradient_descent, GradientProblem, ArmijoLinesearch
Available Coefficients
The update rules act as DirectionUpdateRule, which internally always first evaluate the gradient itself.
Manopt.ConjugateDescentCoefficient — TypeConjugateDescentCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptionso include the last iterates $x_k,\xi_k$, the current iterates $x_{k+1},\xi_{k+1}$ and the last update direction $\delta=\delta_k$, where the last three ones are stored in the variables with prequel Old based on [Flethcer1987] adapted to manifolds:
See also conjugate_gradient_descent
Constructor
ConjugateDescentCoefficient(a::StoreOptionsAction=())Construct the conjugate descnt coefficient update rule, a new storage is created by default.
Manopt.DaiYuanCoefficient — TypeDaiYuanCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptionso include the last iterates $x_k,\xi_k$, the current iterates $x_{k+1},\xi_{k+1}$ and the last update direction $\delta=\delta_k$, where the last three ones are stored in the variables with prequel Old based on [DaiYuan1999]
adapted to manifolds: let $\nu_k = \xi_{k+1} - P_{x_{k+1}\gets x_k}\xi_k$, where $P_{a\gets b}(\cdot)$ denotes a vector transport from the tangent space at $a$ to $b$.
Then the coefficient reads
See also conjugate_gradient_descent
Constructor
DaiYuanCoefficient(
t::AbstractVectorTransportMethod=ParallelTransport(),
a::StoreOptionsAction=(),
)Construct the Dai Yuan coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
Manopt.FletcherReevesCoefficient — TypeFletcherReevesCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptionso include the last iterates $x_k,\xi_k$, the current iterates $x_{k+1},\xi_{k+1}$ and the last update direction $\delta=\delta_k$, where the last three ones are stored in the variables with prequel Old based on [FletcherReeves1964] adapted to manifolds:
See also conjugate_gradient_descent
Constructor
FletcherReevesCoefficient(a::StoreOptionsAction=())Construct the Fletcher Reeves coefficient update rule, a new storage is created by default.
Manopt.HagerZhangCoefficient — TypeHagerZhangCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptionso include the last iterates $x_k,\xi_k$, the current iterates $x_{k+1},\xi_{k+1}$ and the last update direction $\delta=\delta_k$, where the last three ones are stored in the variables with prequel Old based on [HagerZhang2005] adapted to manifolds: let $\nu_k = \xi_{k+1} - P_{x_{k+1}\gets x_k}\xi_k$, where $P_{a\gets b}(\cdot)$ denotes a vector transport from the tangent space at $a$ to $b$.
This method includes a numerical stability proposed by those authors.
See also conjugate_gradient_descent
Constructor
HagerZhangCoefficient(
t::AbstractVectorTransportMethod=ParallelTransport(),
a::StoreOptionsAction=(),
)Construct the Hager Zhang coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
Manopt.HeestenesStiefelCoefficient — TypeHeestenesStiefelCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptionso include the last iterates $x_k,\xi_k$, the current iterates $x_{k+1},\xi_{k+1}$ and the last update direction $\delta=\delta_k$, where the last three ones are stored in the variables with prequel Old based on [HeestensStiefel1952]
adapted to manifolds as follows: let $\nu_k = \xi_{k+1} - P_{x_{k+1}\gets x_k}\xi_k$. Then the update reads
where $P_{a\gets b}(\cdot)$ denotes a vector transport from the tangent space at $a$ to $b$.
Constructor
HeestenesStiefelCoefficient(
t::AbstractVectorTransportMethod=ParallelTransport(),
a::StoreOptionsAction=()
)Construct the Heestens Stiefel coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
See also conjugate_gradient_descent
Manopt.LiuStoreyCoefficient — TypeLiuStoreyCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptionso include the last iterates $x_k,\xi_k$, the current iterates $x_{k+1},\xi_{k+1}$ and the last update direction $\delta=\delta_k$, where the last three ones are stored in the variables with prequel Old based on [LuiStorey1991] adapted to manifolds: let $\nu_k = \xi_{k+1} - P_{x_{k+1}\gets x_k}\xi_k$, where $P_{a\gets b}(\cdot)$ denotes a vector transport from the tangent space at $a$ to $b$.
Then the coefficient reads
See also conjugate_gradient_descent
Constructor
LiuStoreyCoefficient(
t::AbstractVectorTransportMethod=ParallelTransport(),
a::StoreOptionsAction=()
)Construct the Lui Storey coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
Manopt.PolakRibiereCoefficient — TypePolakRibiereCoefficient <: DirectionUpdateRuleComputes an update coefficient for the conjugate gradient method, where the ConjugateGradientDescentOptionso include the last iterates $x_k,\xi_k$, the current iterates $x_{k+1},\xi_{k+1}$ and the last update direction $\delta=\delta_k$, where the last three ones are stored in the variables with prequel Old based on [PolakRibiere1969][Polyak1969]
adapted to manifolds: let $\nu_k = \xi_{k+1} - P_{x_{k+1}\gets x_k}\xi_k$, where $P_{a\gets b}(\cdot)$ denotes a vector transport from the tangent space at $a$ to $b$.
Then the update reads
Constructor
PolakRibiereCoefficient(
t::AbstractVectorTransportMethod=ParallelTransport(),
a::StoreOptionsAction=()
)Construct the PolakRibiere coefficient update rule, where the parallel transport is the default vector transport and a new storage is created by default.
See also conjugate_gradient_descent
Manopt.SteepestDirectionUpdateRule — TypeSteepestDirectionUpdateRule <: DirectionUpdateRuleThe simplest rule to update is to have no influence of the last direction and hence return an update $\beta = 0$ for all ConjugateGradientDescentOptionso
See also conjugate_gradient_descent
Literature
- Flethcer1987
R. Fletcher, Practical Methods of Optimization vol. 1: Unconstrained Optimization John Wiley & Sons, New York, 1987. doi 10.1137/1024028
- DaiYuan1999
[Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), pp. 177–182. doi: 10.1137/S1052623497318992
- FletcherReeves1964
R. Fletcher and C. Reeves, Function minimization by conjugate gradients, Comput. J., 7 (1964), pp. 149–154. doi: 10.1093/comjnl/7.2.149
- HagerZhang2005
[W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim, (16), pp. 170-192, 2005. doi: 10.1137/030601880
- HeestensStiefel1952
M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436. doi: 10.6028/jres.049.044
- LuiStorey1991
[Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms, Part 1: Theory J. Optim. Theory Appl., 69 (1991), pp. 129–137. doi: 10.1007/BF00940464
- PolakRibiere1969
E. Polak, G. Ribiere, Note sur la convergence de méthodes de directions conjuguées ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 3 (1969) no. R1, p. 35-43, url: http://www.numdam.org/item/?id=M2AN1969__31350
- Polyak1969
B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comp. Math. Math. Phys., 9 (1969), pp. 94–112. doi: 10.1016/0041-5553(69)90035-4